
K13976

Instead of presenting the standard theoretical treatments that under-
lie the various numerical methods used by scientists and engineers,
Using R for Numerical Analysis in Science and Engineering
shows how to use R and its add-on packages to obtain numerical
solutions to the complex mathematical problems commonly faced
by scientists and engineers. This practical guide to the capabilities
of R demonstrates Monte Carlo, stochastic, deterministic, and other
numerical methods through an abundance of worked examples and
code, covering the solution of systems of linear algebraic equations
and nonlinear equations as well as ordinary differential equations and
partial differential equations. It not only shows how to use R’s power-
ful graphic tools to construct the types of plots most useful in scien-
tific and engineering work, but also

• Explains how to statistically analyze and fit data to linear and
nonlinear models

• Explores numerical differentiation, integration, and optimization
• Describes how to find eigenvalues and eigenfunctions
• Discusses interpolation and curve fitting
• Considers the analysis of time series

Using R for Numerical Analysis in Science and Engineering pro-
vides a solid introduction to the most useful numerical methods for
scientific and engineering data analysis using R.

Using R for Numerical
Analysis in Science
and Engineering

U
sing R

 for N
um

erical A
nalysis in S

cience and Engineering

Victor A. Bloomfield

B
loom

field

The R SeriesStatistics

K13976_Cover.indd 1 3/18/14 12:29 PM

Victor A. Bloomfield
University of Minnesota

Minneapolis, USA

Using R for Numerical
Analysis in Science

and Engineering

K13976_FM.indd 1 3/24/14 11:19 AM

Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 5,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology,

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and

graphics.

The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Series Editors

K13976_FM.indd 2 3/24/14 11:19 AM

Published Titles

Using R for Numerical Analysis in Science and Engineering , Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Computational Actuarial Science with R, Arthur Charpentier

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Reproducible Research with R and RStudio, Christopher Gandrud

Displaying Time Series, Spatial, and Space-Time Data with R,
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence
and John Verzani

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Customer and Business Analytics: Applied Data Mining for Business Decision
Making Using R, Daniel S. Putler and Robert E. Krider

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,
and Roger D. Peng

Dynamic Documents with R and knitr, Yihui Xie

K13976_FM.indd 3 3/24/14 11:19 AM

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant
the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related
products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach
or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140220

International Standard Book Number-13: 978-1-4398-8449-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xiii

Preface xix

1 Introduction 1
1.1 Obtaining and installing R 1
1.2 Learning R 1
1.3 Learning numerical methods 1
1.4 Finding help 2
1.5 Augmenting R with packages 3
1.6 Learning more about R 5

1.6.1 Books 5
1.6.2 Online resources 5

2 Calculating 7
2.1 Basic operators and functions 7
2.2 Complex numbers 8
2.3 Numerical display, round-off error, and rounding 9
2.4 Assigning variables 11

2.4.1 Listing and removing variables 12
2.5 Relational operators 12
2.6 Vectors 13

2.6.1 Vector elements and indexes 13
2.6.2 Operations with vectors 14
2.6.3 Generating sequences 15

2.6.3.1 Regular sequences 15
2.6.3.2 Repeating values 16
2.6.3.3 Sequences of random numbers 16

2.6.4 Logical vectors 17
2.6.5 Speed of forming large vectors 18
2.6.6 Vector dot product and crossproduct 19

2.7 Matrices 21
2.7.1 Forming matrices 21
2.7.2 Operations on matrices 24

2.7.2.1 Arithmetic operations on matrices 24
2.7.2.2 Matrix multiplication 25

v

vi CONTENTS

2.7.2.3 Transpose and determinant 26
2.7.2.4 Matrix crossproduct 26
2.7.2.5 Matrix exponential 27
2.7.2.6 Matrix inverse and solve 27
2.7.2.7 Eigenvalues and eigenvectors 29
2.7.2.8 Singular value decomposition 31

2.7.3 The Matrix package 33
2.7.4 Additional matrix functions and packages 34

2.8 Time and date calculations 34

3 Graphing 37
3.1 Scatter plots 37
3.2 Function plots 39
3.3 Other common plots 40

3.3.1 Bar charts 40
3.3.2 Histograms 42
3.3.3 Box-and-whisker plots 43

3.4 Customizing plots 44
3.4.1 Points and lines 44
3.4.2 Axes, ticks, and par() 44
3.4.3 Overlaying plots with graphic elements 46

3.5 Error bars 48
3.6 Superimposing vectors in a plot 49
3.7 Modifying axes 50

3.7.1 Logarithmic axes 51
3.7.2 Supplementary axes 51
3.7.3 Incomplete axis boxes 52
3.7.4 Broken axes 52

3.8 Adding text and math expressions 54
3.8.1 Making math annotations with expression() 55

3.9 Placing several plots in a figure 56
3.10 Two- and three-dimensional plots 58
3.11 The plotrix package 60

3.11.1 radial.plot and polar.plot 60
3.11.2 Triangle plot 61
3.11.3 Error bars in plotrix 62

3.12 Animation 63
3.13 Additional plotting packages 64

4 Programming and functions 65
4.1 Conditional execution: if and ifelse 65
4.2 Loops 66

4.2.1 for loop 66
4.2.2 Looping with while and repeat 68

4.3 User-defined functions 69

CONTENTS vii

4.4 Debugging 72
4.5 Built-in mathematical functions 73

4.5.1 Bessel functions 73
4.5.2 Beta and gamma functions 74
4.5.3 Binomial coefficients 75

4.6 Special functions of mathematical physics 75
4.6.1 The gsl package 75
4.6.2 Special functions in other packages 75

4.7 Polynomial functions in packages 78
4.7.1 PolynomF package 79
4.7.2 orthopolynom package 83

4.8 Case studies 86
4.8.1 Two-dimensional random walk 86
4.8.2 Eigenvalues of a polymer chain 87

5 Solving systems of algebraic equations 91
5.1 Finding the zeros of a polynomial 91
5.2 Finding the zeros of a function 92

5.2.1 Bisection method 92
5.2.2 Newton’s method 93
5.2.3 uniroot and uniroot.all 94

5.3 Systems of linear equations: matrix solve 96
5.4 Matrix inverse 97
5.5 Singular matrix 97
5.6 Overdetermined systems and generalized inverse 98
5.7 Sparse matrices 99

5.7.1 Tridiagonal matrix 99
5.7.2 Banded matrix 101
5.7.3 Block matrix 102

5.8 Matrix decomposition 104
5.8.1 QR decomposition 105
5.8.2 Singular value decomposition 106
5.8.3 Eigendecomposition 107
5.8.4 LU decomposition 107
5.8.5 Cholesky decomposition 108
5.8.6 Schur decomposition 109
5.8.7 backsolve and forwardsolve 109

5.9 Systems of nonlinear equations 109
5.9.1 multiroot in the rootSolve package 109
5.9.2 nleqslv 111
5.9.3 BBsolve() in the BB package 112

5.10 Case studies 117
5.10.1 Spectroscopic analysis of a mixture 117
5.10.2 van der Waals equation 120
5.10.3 Chemical equilibrium 122

viii CONTENTS

6 Numerical differentiation and integration 125
6.1 Numerical differentiation 125

6.1.1 Numerical differentiation using base R 125
6.1.1.1 Using the fundamental definition 125
6.1.1.2 diff() 126

6.1.2 Numerical differentiation using the numDeriv package 127
6.1.2.1 grad() 128
6.1.2.2 jacobian() 128
6.1.2.3 hessian 129

6.1.3 Numerical differentiation using the pracma package 129
6.1.3.1 fderiv() 129
6.1.3.2 numderiv() and numdiff() 130
6.1.3.3 grad() and gradient() 131
6.1.3.4 jacobian() 131
6.1.3.5 hessian 132
6.1.3.6 laplacian() 133

6.2 Numerical integration 133
6.2.1 integrate: Basic integration in R 134
6.2.2 Integrating discretized functions 136
6.2.3 Gaussian quadrature 137
6.2.4 More integration routines in pracma 140
6.2.5 Functions with singularities 142
6.2.6 Infinite integration domains 144
6.2.7 Integrals in higher dimensions 146
6.2.8 Monte Carlo and sparse grid integration 148
6.2.9 Complex line integrals 150

6.3 Symbolic manipulations in R 152
6.3.1 D() 152
6.3.2 deriv() 152
6.3.3 Polynomial functions 154
6.3.4 Interfaces to symbolic packages 155

6.4 Case studies 155
6.4.1 Circumference of an ellipse 155
6.4.2 Integration of a Lorentzian derivative spectrum 156
6.4.3 Volume of an ellipsoid 157

7 Optimization 159
7.1 One-dimensional optimization 159
7.2 Multi-dimensional optimization with optim() 162

7.2.1 optim() with “Nelder–Mead” default 163
7.2.2 optim() with “BFGS” method 165
7.2.3 optim() with “CG” method 167
7.2.4 optim() with “L-BFGS-B” method to find a local minimum 167

7.3 Other optimization packages 169
7.3.1 nlm() 169

CONTENTS ix

7.3.2 ucminf package 171
7.3.3 BB package 171
7.3.4 optimx() wrapper 172
7.3.5 Derivative-free optimization algorithms 172

7.4 Optimization with constraints 173
7.4.1 constrOptim to optimize functions with linear constraints 173
7.4.2 External packages alabama and Rsolnp 175

7.5 Global optimization with many local minima 177
7.5.1 Simulated annealing 178
7.5.2 Genetic algorithms 181

7.5.2.1 DEoptim 181
7.5.2.2 rgenoud 183
7.5.2.3 GA 183

7.6 Linear and quadratic programming 183
7.6.1 Linear programming 183
7.6.2 Quadratic programming 186

7.7 Mixed-integer linear programming 189
7.7.1 Mixed-integer problems 189
7.7.2 Integer programming problems 190

7.7.2.1 Knapsack problems 191
7.7.2.2 Transportation problems 191
7.7.2.3 Assignment problems 192
7.7.2.4 Subsetsum problems 193

7.8 Case study 194
7.8.1 Monte Carlo simulation of the 2D Ising model 194

8 Ordinary differential equations 199
8.1 Euler method 200

8.1.1 Projectile motion 201
8.1.2 Orbital motion 203

8.2 Improved Euler method 205
8.3 deSolve package 208

8.3.1 lsoda() and lsode() 210
8.3.2 “adams” and related methods 211
8.3.3 Stiff systems 213

8.4 Matrix exponential solution for sets of linear ODEs 214
8.5 Events and roots 215
8.6 Difference equations 220
8.7 Delay differential equations 221
8.8 Differential algebraic equations 224
8.9 rootSolve for steady state solutions of systems of ODEs 227
8.10 bvpSolve package for boundary value ODE problems 230

8.10.1 bvpshoot() 230
8.10.2 bvptwp() 231
8.10.3 bvpcol() 232

x CONTENTS

8.11 Stochastic differential equations: GillespieSSA package 233
8.12 Case studies 240

8.12.1 Launch of the space shuttle 240
8.12.2 Electrostatic potential of DNA solutions 241
8.12.3 Bifurcation analysis of Lotka–Volterra model 244

9 Partial differential equations 249
9.1 Diffusion equation 249
9.2 Wave equation 251

9.2.1 FTCS method 252
9.2.2 Lax method 253

9.3 Laplace’s equation 254
9.4 Solving PDEs with the ReacTran package 256

9.4.1 setup.grid.1D 257
9.4.2 setup.prop.1D 258
9.4.3 tran.1D 258
9.4.4 Calling ode.1D or steady.1D 259

9.5 Examples with the ReacTran package 259
9.5.1 1-D diffusion-advection equation 259
9.5.2 1-D wave equation 260
9.5.3 Laplace equation 262
9.5.4 Poisson equation for a dipole 263

9.6 Case studies 264
9.6.1 Diffusion in a viscosity gradient 264
9.6.2 Evolution of a Gaussian wave packet 267
9.6.3 Burgers equation 269

10 Analyzing data 273
10.1 Getting data into R 273
10.2 Data frames 274
10.3 Summary statistics for a single dataset 275
10.4 Statistical comparison of two samples 277
10.5 Chi-squared test for goodness of fit 279
10.6 Correlation 280
10.7 Principal component analysis 281
10.8 Cluster analysis 283

10.8.1 Using hclust for agglomerative hierarchical clustering 283
10.8.2 Using diana for divisive hierarchical clustering 284
10.8.3 Using kmeans for partitioning clustering 285
10.8.4 Using pam for partitioning around medoids 286

10.9 Case studies 286
10.9.1 Chi square analysis of radioactive decay 286
10.9.2 Principal component analysis of quasars 289

CONTENTS xi

11 Fitting models to data 293
11.1 Fitting data with linear models 293

11.1.1 Polynomial fitting with lm 294
11.2 Fitting data with nonlinear models 296
11.3 Inverse modeling of ODEs with the FME package 304
11.4 Improving the convergence of series: Padé and Shanks 309
11.5 Interpolation 311

11.5.1 Linear interpolation 312
11.5.2 Polynomial interpolation 313
11.5.3 Spline interpolation 313

11.5.3.1 Integration and differentiation with splines 314
11.5.4 Rational interpolation 315

11.6 Time series, spectrum analysis, and signal processing 316
11.6.1 Fast Fourier transform: fft() function 316
11.6.2 Inverse Fourier transform 317
11.6.3 Power spectrum: spectrum() function 318
11.6.4 findpeaks() function 321
11.6.5 Signal package 322

11.6.5.1 Butterworth filter 322
11.6.5.2 Savitzky–Golay filter 324
11.6.5.3 fft filter 324

11.7 Case studies 325
11.7.1 Fitting a rational function to data 325
11.7.2 Rise of atmospheric carbon dioxide 327

Bibliography 329

Index 331

List of Figures

2.1 Image plot of sparse banded matrix CAex. 34

3.1 Left: Default data plot; Right: Refined data plot. 38
3.2 Left: plot(x,y,type="l"); Right: plot(x,y,type="o"). 38
3.3 Left: Function plot using curve; Right: Function plot superim-

posed on data points. 39
3.4 The function sin plotted without specifying the independent

variable. 39
3.5 curve plot of a polynomial with points added. 40
3.6 Stacked bar plots using beside = FALSE default option. 41
3.7 Bar plots using beside = TRUE option. 41
3.8 Distribution of 1000 normally distributed random variables with

mean = 10 and standard deviation = 2. Left: Histogram; Right:
Density plot. 43

3.9 Box plot of distribution of x from Figure 3.8. 44
3.10 Point characters available in R. 44
3.11 Line types available in R. 44
3.12 Left: Default plot of 0.8e−t/4 + 0.05; Right: Plot modified as

described in the text. 45
3.13 Left: Graphic elements produced with base R; Right: Graphic

elements produced with plotrix package. 46
3.14 The positive and negative regions of besselJ(x,1 distinguished

with different shades of gray using the polygon function. 48
3.15 Illustration of error bars using the arrows command. Left: y error

bars only; Right: Both x and y error bars. 49
3.16 Matplots of iris data. 50
3.17 Superimposed vectors using matplot. 51
3.18 Plotting with logarithmic axes. 51
3.19 Adding supplementary axes to a graph. 52
3.20 Drawing a graph with only two axes. 53
3.21 Example of axis.break() in plotrix to plot data of substantially

different magnitudes. 54
3.22 Annotating a graph with text and arrow. 54
3.23 Use of expression() to annotate a graph. 55
3.24 Placing several plots in a figure. 56

xiii

xiv LIST OF FIGURES

3.25 Using layout to create a scatter plot with accompanying box plots. 57
3.26 Left: Image plot; Right: Contour plot. 58
3.27 Left: Perspective plot of the outer product of sin(n) and cos(n)e−n/3;

Right: The same plot with shade applied. 59
3.28 scatterplot3d plots (left) default (type = ‘‘p’’); Right:

(type =‘‘h’’). 60
3.29 Radial (left) and polar (center, right) plots using (p)polygon,

(s)ymbol, and (r)adial line representations. 61
3.30 Triangle plot of alloy composition. 62
3.31 Result of Brownian motion animation after 100 steps with 10

particles. 63

4.1 Simulation of radioactive decay using Euler’s method. 68
4.2 Overlay of gaussian(x,0,1) (solid line), dnorm (points), and

lorentzian(x,0,1) (dotted line) functions. 70
4.3 Histogram of displacements of 100 one-dimensional random walks. 71
4.4 Bessel functions J(x,0) and J(x,1). 74
4.5 Laguerre polynomials. 76
4.6 Fresnel sine and cosine integrals. 77
4.7 Plot of a polynomial and its first derivative. 81
4.8 Fitting data to a polynomial with poly.calc. 82
4.9 Plot of 5th Hermite polynomial. 83
4.10 Normalized associated Laguerre polynomials used to calculate the

electron densities of the 2s and 2p orbitals of the hydrogen atom. 85
4.11 Path of a two-dimensional random walk confined to a circular

domain. 87
4.12 Comparison of S2 and S function definitions for Fresnel sine

integral. 88

5.1 The function f(x,a) with a = 0.5. Roots are located by the points
command once they have been calculated by uniroot.all. 95

5.2 Viscosity of water fit to a quadratic in temperature. 98
5.3 Plot of the lhs of Equation 5.4. 110
5.4 Simulated spectrum of 4-component mixture. 119
5.5 Plots of reduced pressure vs. reduced volume below (points) and

above (line) the critical temperature. 122

6.1 Error in numerical differentiation of f as function of h. 126
6.2 Electric field of a dipole, plotted using the quiver function. 132
6.3 Plot of the function defined by Equation 6.27 and its first and

second derivatives. 153
6.4 (left) Plot of the function defined by Equation 6.28 compared with

a Gaussian. (right) Derivative of the Lorentzian in the left panel. 156

7.1 Plot of function f (x) = xsin(4x) showing several maxima and
minima. 160

LIST OF FIGURES xv

7.2 Plot of function f (x) = |x2 − 8| showing several maxima and
minima. 162

7.3 Perspective plot of the function defined by Equation 7.1. 163
7.4 Perspective plot of the Rosenbrock banana function defined by

Equation 7.2. 165
7.5 Least squares fit of a spline function to data. 169
7.6 Perspective plot of the sum of two sinc functions. 178
7.7 Perspective plot of Equation 7.7. 180
7.8 Plot of smallest enclosing circle for ten points. 187
7.9 Plots of thermodynamic and magnetic functions for 2D Ising

model. 198

8.1 Exponentially decaying population calculated by the improved
Euler method. 205

8.2 Numerical solution of the Bessel equation of order 1. 210
8.3 Concentration changes with time in an oscillating chemical system

(Equation 8.6). 212
8.4 RC circuit with periodic pulse as example of an event-driven ODE. 216
8.5 Drug delivery protocol illustrating root-triggered event: when B

falls below 1, A is added to bring it to 2. 218
8.6 Lotka–Volterra predator–prey simulation. 218
8.7 Lotka–Volterra predator–prey simulation with added event at t =

50. 220
8.8 Graphs of three population groups (1: 0–12, 2: 13–40, 3: greater

than 40). 222
8.9 Solutions to Hutchinson Equation 8.11 using dede with time lag τ

= 1 and 3). 223
8.10 Solution to system of DDEs with two dependent variables. 224
8.11 Solution to system of differential algebraic Equations 8.12. 225
8.12 Solution to system of differential algebraic Equations 8.13. 227
8.13 Decrease in substrate S and increase in product P according to

Michaelis–Menten Equation 8.14. 228
8.14 Solution to Equation 8.15 for the shape of a liquid drop on a flat

surface, by the shooting method. 231
8.15 Solution to Equation 8.17 by the two-point method. 232
8.16 Solution to Equations 8.19 and 8.20 by the collocation method. 234
8.17 Time dependence of the binding reaction S + P = SP treated as a

continuous process. 235
8.18 Time dependence of the binding reaction S + P = SP treated as a

stochastic process. 237
8.19 Fractional occupancy of binding sites calculated according to the

direct and three tau-leap methods of the Gillespie algorithm. 239
8.20 Height vs. horizontal distance for the first 120 seconds of the space

shuttle launch. 242

xvi LIST OF FIGURES

8.21 Electrostatic potential as a function of distance from the surface
of double-stranded DNA, surrounded by an array of parallel DNA
molecules at an average distance of 3 nm center-to-center. 243

8.22 Time course of the three-population model of resource u, consumer
v, and predator w, illustrating uniform phase but chaotic amplitude
behavior. 246

8.23 Bifurcation diagram for the three-population model, with the
predator–independent herbivore loss rate b as the control parameter.
Bifurcations occur at the extrema of the predator variable w. 247

9.1 Perspective plot of the evolution of a sharp concentration spike due
to diffusion. 251

9.2 Advection of a Gaussian pulse calculated according to the FTCS
method. 253

9.3 Advection of a Gaussian pulse calculated according to the Lax
method. 254

9.4 Solution to the Laplace equation with the Jacobi method. 256
9.5 Advection and diffusion of an initially sharp concentration layer. 261
9.6 Behavior of a plucked string. 262
9.7 Contour plot of solution to Laplace equation with gradient ∂w/∂y =

−1. 263
9.8 Contour plot of solution to Poisson equation for a dipole. 265
9.9 Concentration profile of a substance in a viscosity gradient. 266
9.10 Real and imaginary parts of a Gaussian wave packet. 268
9.11 Time evolution of the probability density of a Gaussian wave

packet. 269
9.12 Solution of the Burgers Equation 9.21 with ReacTran (left)

and exact solution for L→∞ (right). 271

10.1 Box plot of chick weights according to feed type. 275
10.2 Histogram and qqplot of Michelson–Morley data. 276
10.3 Comparison of speed measurements in five sets of Michelson–

Morley experiments. 277
10.4 Box plots of ozone level by months 5–9. 278
10.5 Histogram and qqplot of ozone levels in month 5. 279
10.6 Linear and log-log plots of brain weight vs. body weight, from

MASS dataset Animals. 280
10.7 Principal component (prcomp) analysis of iris data. 283
10.8 Hierarchical cluster analysis of iris data using hclust. 284
10.9 Divisive hierarchical cluster analysis of iris data using diana. 285
10.10 pam (partitioning around medoids) analysis of iris data. 287
10.11 Screeplot of quasar data. 290

11.1 Linear fit (left) and residuals (right) for simulated data with random
error. 294

LIST OF FIGURES xvii

11.2 lm() fit to a quadratic polynomial with random error. 295
11.3 (left) Plot of misra1a data with abline of linear fit; (right) Residuals

of linear fit to misra1a data. 298
11.4 (left) nls() exponential fit to misra1a data; (right) Residuals of

nls() exponential fit to misra1a data. 299
11.5 Fit and residuals of nls() fit to the 3-exponential Lanczos function

11.1. 302
11.6 Concentration of product C of reversible reaction with points

reflecting measurement errors. 306
11.7 Approximations of ln(1+x): Solid line, true function; dashed line,

Taylor’s series; points, Padé approximation. 310
11.8 Approximation to ζ (2) by direct summation of 1/x2. 311
11.9 Viscosity of 20% solutions of sucrose in water as a function of

temperature. 312
11.10 Examples of non-monotonic and monotonic fitting to a set of

points. 314
11.11 Fit of a spline function to a simulated spectrum, along with first

and second derivative curves. 315
11.12 Sampling and analysis of a sine signal. 316
11.13 Inverse fft of the signal in Figure 11.17. 317
11.14 Power spectrum of sine function. 318
11.15 fft of the sum of two sine functions. 319
11.16 Power spectrum of the sum of two sine functions. 320
11.17 Power spectrum (right) of the sum of two sine functions with

random noise and a sloping baseline (left). 320
11.18 Plot of the peaks derived from the power spectrum. 321
11.19 Frequency response of the Butterworth filter butter(4,0.1). 323
11.20 Use of butter(3,0.1) filter to extract a sinusoidal signal from

added normally distributed random noise. 323
11.21 Use of Savitzky–Golay filter to extract a sinusoidal signal from

added normally distributed random noise. 324
11.22 Use of fftfilt to extract a sinusoidal signal from added normally

distributed random noise. 325
11.23 (left) Plot of Hahn1 data and fitting function; (right) Plot of

residuals. 326
11.24 Atmospheric concentration of CO2 monthly from 1959 to 1997. 327
11.25 Decomposition of CO2 data into trend, seasonal, and random

components. 328

Preface

The complex mathematical problems faced by scientists and engineers rarely can be
solved by analytical approaches, so numerical methods are often necessary. There
are many books that deal with numerical methods for scientists and engineers; their
content is fairly standardized: Solution of systems of linear algebraic equations and
nonlinear equations, finding eigenvalues and eigenfunctions, interpolation and curve
fitting, numerical differentiation and integration, optimization, solution of ordinary
differential equations and partial differential equations, and Fourier analysis. Some-
times statistical analysis of data is included, as it should be. As powerful personal
computers have become virtually universal on the desks of scientists and engineers,
computationally intensive Monte Carlo methods are joining the numerical analysis
armamentarium.

If there are many books on these well-established topics, why am I writing an-
other one? The answer is to propose and demonstrate the use of a language relatively
new to the field: R. My approach in this book is not to present the standard theoretical
treatments that underlie the various numerical methods used by scientists and engi-
neers. There are many fine books and online resources that do that, including one that
uses R: Owen Jones, Robert Maillardet, and Andrew Robinson. Introduction to Sci-
entific Programming and Simulation Using R. Chapman & Hall/CRC, Boca Raton,
FL, 2009.

Instead, I have tried to write a guide to the capabilities of R and its add-on pack-
ages in the realm of numerical methods, with simple but useful examples of how the
most pertinent functions can be employed in practical situations. Perhaps—if it were
not for its cumbersomeness—a more accurately descriptive title for this book would
be How To Use R to Perform Numerical Analyses of Interest to Scientists and Engi-
neers. I believe that the approach I take is the most efficient way to introduce new
users to the powerful capabilities of R.

R, with more than two million users worldwide, is well known and widely used
among statisticians as a “language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques: linear
and nonlinear modeling, statistical tests, time series analysis, classification, cluster-
ing, etc.” ∗ It runs on essentially all common operating systems: Mac OS, Windows,
and Linux.

Less well known than R’s statistical prowess is that it has capabilities in the
realm of numerical methods very similar to those of excellent but costly commercial

∗Comprehensive R Archive Network (CRAN), http[://cran.r-project.org/

xix

xx PREFACE

programs such as MATLAB R©, MathCad, and the numerical parts of Mathematica
and Maple, with the considerable advantages that it is free and open source. The fact
that R is free is important in making its capabilities available to everyone, even if
they live in poor countries, do not work in companies or institutions that can afford
expensive site licenses, or no longer have student discounts.

R has excellent, publication-quality graphics. It has many useful built-in func-
tions and add-on packages, and can be readily extended with standard program-
ing techniques. For large, computationally demanding projects, R can interface
with speedier but more-difficult-to-program languages such as Fortran, C, or C++.
It has extensive online help and a large and growing library of books that il-
lustrate its many applications. R is a stable but evolving computational platform,
which undergoes continual (but not excessive) development and maintenance, so
that it can be relied on over the long term. To quote from the “What Is R?” page
http://www.r-project.org/about.html linked to the R Project home page at
http://www.r-project.org/,

R is an integrated suite of software facilities for data manipulation, calculation
and graphical display. It includes
• an effective data handling and storage facility,
• a suite of operators for calculations on arrays, in particular matrices,
• a large, coherent, integrated collection of intermediate tools for data analy-

sis,
• graphical facilities for data analysis and display either on-screen or on hard-

copy,
• a well-developed, simple and effective programming language which in-

cludes conditionals, loops, user-defined recursive functions and input and
output facilities.

The term “environment” is intended to characterize it as a fully planned and
coherent system. . .

Who should read this book?
I have written this book with the hope of convincing every practicing scientist and

engineer that R can be their fundamental computational, graphics, and data analysis
tool. As summarized above, and as will be developed throughout the book, R has
virtually all the capabilities that are needed for high-level quantitative work in the
physical, biological, and engineering sciences. Importantly, that work can be devel-
oped and shared in teaching and collaborative efforts, thanks to the free, open-source
nature of R.

Readers of this book should have the standard set of introductory undergradu-
ate math courses: differential and integral calculus, linear algebra, and differential
equations. Some contact with statistics would be desirable for the last two chap-
ters. Familiarity with basic numerical methods—e.g., trapezoidal or Simpson’s rule
integration, Euler’s method for integrating differential equations, linear least squares
fitting of points to a line—would be desirable to provide intuition and motivation. But

PREFACE xxi

my aim is to provide a guide to a standard set of high-level numerical analysis tools
as implemented in R, without burdening the reader with detailed derivations or rare
exceptions: numerical methods that usually work (apologies to Forman S. Acton).
My goal is to provide a pragmatic guide to these tools, illustrated with suitable ex-
amples, to encourage a broad range of scientists and engineers—current practitioners
and students—to use them in their work.

Overview of the contents of this book
Chapter 1, Introduction describes how to obtain and install R, how to find help,

how to augment R with external packages, and how to learn more about R through
books and online resources.

Chapter 2, Calculating lists the basic operators and functions that make R a pow-
erful calculator. It shows how to assign and work with variables, especially the
vectors and matrices that are R’s core numeric types.

Chapter 3, Graphing introduces the types of plots most useful in science and en-
gineering work. It also shows how to modify axes, add text and math expressions
to a plot, combine several plots in a figure, and produce animated graphics.

Chapter 4, Programming and functions introduces the basic programming con-
cepts used in R. It shows how R implements conditional and repetitive execution,
explains how users can define their own functions, and describes the wide variety
of mathematical functions already available in R.

Chapter 5, Solving systems of algebraic equations discusses how to find the zeros
of polynomials and other functions, and how to solve systems of linear equations
using matrix methods. It describes special methods for handling sparse matrices,
introduces the Matrix package that has advantages in dealing with very large
systems, and shows how to perform the standard types of matrix decomposition
(eigen, SVD, QR, etc.). Chapter 5 concludes with a discussion of some of the R
packages and functions for solving systems of nonlinear equations.

Chapter 6, Numerical differentiation and integration begins with a discussion
of numerical differentiation both in base R and in some specialized packages. Var-
ious algorithms for numerical integration in one dimension are then considered,
extending to multidimensional integration where Monte Carlo methods come to
the fore. It concludes with a discussion of R’s facilities for symbolic differentia-
tion, especially of polynomials, and its interfaces to symbolic packages.

Chapter 7, Optimization begins with a discussion of one-dimensional opti-
mization, and then moves on to the numerous methods for performing multi-
dimensional optimization, both unconstrained and constrained. Finding the global
minimum of functions with many local minima is tackled via simulated anneal-
ing and genetic algorithm approaches. The chapter concludes with discussions of
linear and quadratic programming and mixed-integer linear programming.

Chapter 8, Ordinary differential equations considers problems that lie at the
heart of numerical methods in science and engineering. It starts with the simple
Euler method for integrating initial value ODEs, but moves rapidly to packages

xxii PREFACE

that embody the most powerful methods for solving systems of stiff and non-
stiff equations. This chapter also deals with difference equations, delay differen-
tial equations, differential algebraic equations, steady-state systems, and boundary
value problems. It concludes with a treatment of stochastic differential equations.

Chapter 9, Partial differential equations deals with some of the most common
and important types of equations encountered in scientific and engineering work,
typified by the diffusion/heat conduction equation, the wave equation, and the
Laplace or Poisson equation. The ReacTran package deals with all of these, and
is particularly useful in solving reaction–diffusion systems.

Chapter 10, Analyzing data introduces topics that are not traditionally part of
a “numerical methods” book but that should be part of the armamentarium of
every scientist and engineer. The chapter discusses how to get external data into
R, how to organize it using data frames, how to analyze data from a single sample
and compare two samples, and how to assess correlation between variables. The
chapter ends with sections that show how to make sense out of large amounts of
data by principal component analysis and cluster analysis.

Chapter 11, Fitting models to data shows how to fit data to linear and nonlin-
ear models, and how to interpolate between measurements. An important section
deals with time series, spectrum analysis, and other aspects of signal processing.
These last two chapters just skim the surface of the enormous statistical capabil-
ities of the R environment, but are intended to give a useful introduction to these
powerful tools.

Obtaining the code used in this book
The code for all examples in this book that are longer than two or three lines is

available for downloading at the publisher’s website, http://www.crcpress.com/
product/isbn/9781439884485.

Acknowledgments

I am grateful to Hans Werner Borchert, author of the valuable packages pracma and
specfun and maintainer of the Numerical Mathematics Task View on the CRAN
website, for his many contributions to this book. In addition to his overall critiques,
he wrote the section on Numerical Integration and several sections in the Optimiza-
tion chapter. Daniel Beard made insightful comments on an earlier version of this
manuscript. My editor Rob Calvert, and his assistants Rachel Holt and Sarah Gel-
son, kept things running smoothly. Karen Simon efficiently shepherded the produc-
tion process. My greatest thanks, however, go to the large community of R project
contributors—both the core group and the authors of the many packages, manuals,
and books—who have given so freely of their time and talent to craft a tool of such
immense value.

MATLAB R© is a registered trademark of The MathWorks, Inc. and is used with per-
mission. The MathWorks does not warrant the accuracy of the text or exercises in
this book. This book’s use or discussion of MATLAB R© software or related products
does not constitute endorsement or sponsorship by The Math Works of a particular
pedagogical approach or particular use of the MATLAB R© software.

For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Chapter 1

Introduction

1.1 Obtaining and installing R

You can download and install R from the CRAN (Comprehensive R Archive Net-
work) website at http://cran.r-project.org/. Choose the appropriate link for
your operating system (Mac OS X, Windows, or Linux), and follow the (not very
complicated) directions. Unless you have some special requirements for customiza-
tion, you should choose the precompiled binary rather than the source code.

As it comes, R has a plain but serviceable interface. It can be run from
the command line or from a set of windows (console, graphics, help, etc.) on
MacOS X or Windows. A neater, more streamlined—but perhaps less flexible—
integrated development interface can be had by installing the freeware RStudio from
http://www.rstudio.org//ide.

1.2 Learning R

The next several chapters of this book are intended to provide a basic introduction
to R. The basic manual for learning R is the online An Introduction to R, found at
http://cran.r-project.org/→ Documentation. The section Learning more
about R at the end of this chapter lists numerous books and online resources.

1.3 Learning numerical methods

This book tries to lightly sketch the basic ideas of the various numerical methods
used, but does not attempt to present their theoretical background or details. Cur-
rently the standard reference on numerical methods in science and engineering is
Numerical Recipes by Press et al. (2007), and there are many other worthwhile
books devoted to the field and the various topics within it. Readers are encouraged
to consult such references, and/or have recourse to various online sources. A Google
search on a given topic will typically lead to a useful Wikipedia article, several sets
of university-level lecture notes, and often treatments based on MATLAB R© or Math-
ematica. Such online resources may be much more accessible than standard printed
references, especially for readers without convenient access to specialized research
library collections.

1

2 INTRODUCTION

1.4 Finding help

If you know the name of an R object, such as a function, and want to know what it
does, what its various arguments (including defaults) are, and what values it returns,
with examples, typehelp (function.name) or ?function.name. For example,
?solve tells us that “This generic function solves the equation a%*% x = b for x,
where b can be either a vector or a matrix.” As one example, it gives inversion of a
Hilbert matrix:
hilbert <- function(n) {i <- 1:n; 1 / outer(i - 1, i, "+")}

h8 <- hilbert(8); h8

sh8 <- solve(h8)

round(sh8 %*% h8, 3)

(Don’t worry if you don’t understand the code at this time. We will discuss R pro-
gramming beginning in Chapter 4.)

Often, you may need to be reminded of the name of a function. A very useful
“cheat sheet” listing many of the more common R functions is “R Reference Card”
by Tom Short, available at http://cran.r-project.org/doc/contrib/Short-
refcard.pdf.

If you think that an object or function may be available, and can guess part
of its name, try apropos(). For example, if you’re interested in spectral analysis,
apropos(spec) gives
[1] "plot.spec" "plot.spec.coherency" "plot.spec.phase" "spec.ar"

[5] "spec.pgram’’ "spec.taper" "spectrum"

However, this does not turn up Special, which yields special mathematical func-
tions related to the beta and gamma functions. apropos() allows searches using
regular expressions; enter ?apropos to see some examples.

help.search() “allows for searching the help system for documentation
matching a given character string in the (file) name, alias, title, concept or key-
word entries (or any combination thereof), using either fuzzy matching or regular
expression matching.” Note that the character string must be in quotes. For example,
help.search("spectral") turns up five topics, with descriptions:
• eigen: Spectral Decomposition of a Matrix
• plot.spec: Plotting Spectral Densities
• spec.ar: Estimate Spectral Density of a Time Series from AR Fit
• spec.pgram: Estimate Spectral Density of a Time Series by a Smoothed Peri-

odogram
• spectrum: Spectral Density Estimation
Clicking on any of these topics brings up its help page.

Using regular expressions, help.search(^spec) brings up those help pages
containing information about topics whose title, alias, or concept contain words that
begin with “spec”: Special, specific, spectral, specification, etc.

help.start() opens your web browser to R’s online documentation. The man-
ual “An Introduction to R” is the standard online reference to the language. Click on

AUGMENTING R WITH PACKAGES 3

“Search Engine & Keywords” to search for keywords, function and data names, and
concepts, and also for words or phrases within help-page titles. A list of keywords ar-
ranged by topics (Basics; Graphics; MASS (the book); Mathematics; Programming,
Input/Output, and Miscellaneous; and Statistics) is provided to help target the search.

R has a large and helpful online community, of which you can ask
questions if you can’t find answers through your own efforts. A very large
database (nearly 2700 pages as of the end of 2013) of topics is maintained at
http://r.789695.n4.nabble.com/. Searching this database can provide leads
to existing resources, or show how others have solved puzzling problems.

Two sites for doing Google-type searching of the R language are http://www.
dangoldstein.com/search r.html and http://www.rseek.org/.

If all else fails, you can ask your own questions by going to http://www.r-pro

ject.org/> Mailing Lists. The third item down is R-help. (The first two are R-
announce, “for major announcements about the development of R and the availability
of new code” and R-packages, “for announcements ... on the availability of new or
enhanced contributed packages.”) The posting guide gives important advice about
“how to ask good questions that prompt useful answers.” Follow that advice to avoid
grumpy responses from the experts.

A somewhat haphazard but occasionally enlightening way to learn about vari-
ous aspects of R is to look at R-bloggers (http://www.r-bloggers.com/), which
collects “daily news and tutorials about R, contributed by over 450 bloggers.”

1.5 Augmenting R with packages

R is to a large extent an environment for packages that perform specialized tasks.
The R distribution itself installs a number of packages, some of which are “just
there” and need not be loaded explicitly. These include base, graphics, stats,
utils, splines, datasets, and several others. Some other packages are “rec-
ommended,” and are included in all binary distributions of R. Most pertinent
for our purposes among these are Matrix (which we will discuss in Chapters 2
and 5), cluster (functions for cluster analysis), and nlme (for nonlinear mixed-
effects models). These must be loaded with the library("package-name") or
require("package-name") function. (library and require can generally be
used interchangeably, although require is intended for use within other func-
tions and the two will give different messages if the package is not available. See
?library for details of their usage.)

Much of the real power of R comes from contributed packages (over 5000 as
of the end of 2013) that can be downloaded from CRAN and installed in your local
copy of R using the command install.packages("package-name"). (Mac OS X
and Windows users can also install packages via the R menu system.) The packages
can then be loaded with require(package-name) or library(package-name).
Packages are in many ways analogous to the add-ons for other mathematical lan-
guages, but are generally free and open source. We will describe and use a number of
such packages in this book, including packages for ordinary and partial differential
equations, orthogonal polynomials, root-finding, optimization, and more.

4 INTRODUCTION

A package may contain datasets, functions written in R, and dynamically loaded
libraries of C or Fortran code. To find what packages are currently installed in R on
your computer, type library(). The datasets in some packages can be of use as
examples in learning about statistical analysis of data, as we will do in Chapter 10.
To get summary help about a package you have installed in R, type library(help
= "package.name") or help(package = "package.name"). Navigating to in-
dividual packages in the CRAN archive will give access to their reference manuals
and (sometimes) vignettes, as downloadable pdf files.

It is often difficult to find a particular function in R, if it’s been implemented
in one of the many packages. The Task Views page, accessible from the CRAN
home page, groups packages according to the tasks that they help to facilitate.
For example, the ChemPhys task view refers to packages useful in chemometrics
and chemical physics that carry out such tasks as linear and nonlinear regression
models, curve resolution, differential equations, optimization, cellular automata, etc.
The NumericalMathematics, DifferentialEquations, Optimization, and
TimeSeries task views are particularly pertinent to the material in this book.

Perhaps the best resource for searching the help pages of contributed packages to
find particular functions is the findFn function in the sos package. Its documenta-
tion states “The sos package provides a means to quickly and flexibly search the help
pages of contributed packages, finding functions and datasets in seconds or minutes
that could not be found in hours or days by any other means we know.”

The R community site http://www.inside-r.org/ enables you to search for
the packages that contain the keyword(s) of interest, and then to browse the help
files of those packages. A similar function is served by the community site crantas-
tic! (http://crantastic.org/), which also provides information about new and
upgraded packages, and allows reviews by users.

RSiteSearch("keyword") at the R prompt opens a web-based interface to
search functions, contributed packages, and R-help postings. For example, typing
RSiteSearch("orthogonal polynomials") yielded 194 documents matching
the query within function, package vignette, and task view targets.

If you rely on certain packages, and want to check whether they’ve been updated,
a bit of code written by Karthik Ram will give you a list of changes.
installed = installed.packages()

available = available.packages()

ia = merge(installed, available, by="Package") [,c

("Package", "Version.x", "Version.y")]

updates = ia[as.character(ia$Version.x) != as.character(ia$Version.y),]

updates

To install every available update, enter update.packages.
One must be cautious when using contributed packages, however, since they are

generally less broadly used—hence less thoroughly vetted—than components of the
base R installation. If possible, test them with examples for which you know the cor-
rect answers, rather than relying on the examples included with the package, before
applying them to problems that matter. Packages with vignettes may show that the

LEARNING MORE ABOUT R 5

author has taken extra care, while packages with old dates may indicate that the code
is not being maintained and updated.

1.6 Learning more about R

1.6.1 Books

An extensive list of “Books related to R,” with bibliographic information and ab-
stracts, can be accessed from the R-Project home page under Documentation. Some
that I have found most helpful include
• Peter Dalgaard. Introductory Statistics with R. Second Edition, Springer, New

York, 2008.
• William N. Venables and Brian D. Ripley. Modern Applied Statistics with S.

Fourth Edition. Springer, New York, 2002 (the book to which the MASS pack-
age is an adjunct).
• Owen Jones, Robert Maillardet, and Andrew Robinson. Introduction to Scientific

Programming and Simulation Using R. Chapman & Hall/CRC, Boca Raton, FL,
2009.
• Karline Soetaert and Peter M.J. Herman, A Practical Guide to Ecological Mod-

elling: Using R as a Simulation Platform, Springer, New York, 2009.
• Victor Bloomfield. Computer Simulation and Data Analysis in Molecular Biology

and Biophysics: An Introduction Using R. Springer, New York, 2009.
• Norman Matloff. The Art of R Programming: A Tour of Statistical Software

Design. No Starch Press, San Francisco, 2011.
• Joseph Adler. R in a Nutshell. O’Reilly, Sebastopol, CA, 2010.
The first two of these books are standard references, the next three emphasize scien-
tific programming rather than statistics, the sixth is an excellent survey of program-
ming approaches, and the last is a useful overall reference. The book by Jones et al. is
particularly valuable as a complement to the one you are reading, because it presents
some of the basic theory behind numerical methods, and implements that theory with
explicit R scripts.

1.6.2 Online resources

Extensive documentation about R is online at http://cran.r-project.org/→
Documentation, where one finds Manuals, FAQs, and Contributed material. Manuals
have been created by the R Development Core Team. The basic manual for learning
the language is An Introduction to R, while The R Reference Index “contains all help
files of the R standard and recommended packages in printable form. (9MB, approx.
3500 pages).”

FAQs contains general information for users on all platforms (Linux, Mac, Unix,
Windows), and also platform-specific information for Mac and Windows.

In keeping with the community spirit underlying R, there is extensive Contributed
documentation divided into “Documents with more than 100 pages,” “Documents

6 INTRODUCTION

with fewer than 100 pages,” and “Short Documents and Reference Cards.” The
document Using R for Scientific Computing by Soetaert in the second category
has much material along the lines of this book. The very useful R Reference Card
at http://cran.r-project.org/doc/contrib/Short-refcard.pdf has al-
ready been mentioned. There are also “Non-English Documents” in many languages.

The reference sheet R and Octave (http://cran.r-project.org/doc/contrib/R-and-
octave.txt) translates many commands between R and Octave or MATLAB, and the
pracma package gives R implementation of many advanced math functions from
MATLAB and Octave.

Of the many other online resources for learning R, Programming in R by
Zoonekynd (http:// zoonek2.free.fr/UNIX/48 R/02.html) and the site of the same
name by Girke (http://manuals.bioinformatics.ucr.edu/home/programming-in-r) are
particularly useful for our purposes.

Chapter 2

Calculating

2.1 Basic operators and functions

R can be used, without any programming, as a powerful calculator. It has all the
standard arithmetic operators and functions, which operate on numeric or complex
vectors (including scalars, which are vectors of length 1).

• Arithmetic operators: The binary arithmetic operators are +, -, *, /, ˆ (exponentia-
tion), %% (mod), and %/% (integer division).
• Logarithms and exponentials: log (natural log), log10, (base 10 log), log2 (base

2 log), log (x,b) (log of x to base b). log1p(x) computes log(1+x) accurately for
|x|<< 1.
• exp computes the exponential function, and expm1 computes exp(x)-1 accurately

for |x|<< 1.
• Trigonometric functions : cos(x), sin(x), tan(x), acos(x), asin(x), atan(x),

atan2(y,x) where angles are in radians and x and y are numeric or complex scalars
or vectors. atan2(y,x) = atan(y/x) for positive arguments. The pracma package,
to which we will refer later, adds more trigonometric functions: cot(x), csc(x),
sec(x), acot(x), acsc(x), asec(x).
• Hyperbolic functions : cosh(x), sinh(x), tanh(x), acosh(x), asinh(x), atanh(x).
pracma adds coth(x), csch(x), sech(x), acoth(x), acsch(x), asech(x).
• Miscellaneous mathematical functions: abs(x), sqrt(x).

R also has Bessel functions and special functions related to the beta and gamma
functions, and packages add more special functions, as we shall discuss in Chapter
4. Here is an entirely artificial example that demonstrates some of the functions:
> log(sqrt(3.2)*besselJ(0.4,0)*exp(-2)/gamma(7.9))

[1] -9.783098

The > at the beginning of the line is the R prompt; it appears automatically. The [1]
indicates the first answer on that line. In this case there is only one answer, but if
there were dozens or hundreds of values returned, with line breaks every 6–8, the
index at the beginning of each line would provide useful orientation.

7

8 CALCULATING

2.2 Complex numbers

R has the standard operations on complex numbers. To get more information,
?complex.
> (1i)^2 # Complex unit i must be multiplied by a scalar

[1] -1+0i

> (1+2i)-(3+4i) # Addition and subtraction

[1] -2-2i

> (1+2i)*(3+4i) # Multiplication

[1] -5+10i

> (1+2i)/(3+4i) # Division

[1] 0.44+0.08i

> (1i + (1i)^2 + (1i)^3 + (1i)^4 + (1i)^5) / (1 + 1i)

[1] 0.5+0.5i

> Re(3+2i); Im(3+2i) # Real and imaginary parts

[1] 3

[1] 2

> Mod(3+2i); Arg(3+2i) # Modulus and argument (radians)

[1] 3.605551

[1] 0.5880026

> Mod((1+2i)*(3+4i)) # Modulus of product = product of moduli

[1] 11.18034

> Mod(1+2i)*Mod(3+4i)

[1] 11.18034

> Conj(3+2i) # Complex conjugate

[1] 3-2i

Example of Euler’s formula exp(i*phi) = cos(phi) + i*sin(phi)

> exp(pi/7*1i)

[1] 0.9009689+0.4338837i

> cos(pi/7) + 1i*sin(pi/7)

[1] 0.9009689+0.4338837i

In R, everything after # is a comment, and is ignored by the interpreter, but can be
extremely useful to programmers and users.

NUMERICAL DISPLAY, ROUND-OFF ERROR, AND ROUNDING 9

To get fractional roots of negative numbers, you must include an imaginary part.
Otherwise, you get NaN (not a number).
> (-8)^(1/3)

[1] NaN

> (-8+0i)^(1/3)

[1] 1+1.732051i

2.3 Numerical display, round-off error, and rounding

By default, R displays seven digits in calculations. This can be changed by
options(digits = d), where d is the desired number of digits. The option re-
mains in effect until changed or until R is restarted.
> Arg(3+2i)

[1] 0.5880026

> options(digits=3)

> Arg(3+2i)

[1] 0.588

The round(number, digits) function rounds the number to the specified
number of decimal places. The default is digits = 0. It works with both positive
and negative numbers of digits.
> options(digits=7)

> round(1234.567) # Default

[1] 1235

> round(1234.567,-2)

[1] 1200

> round(1234.567,2)

[1] 1234.57

The function signif(number, digits) rounds the number to the specified num-
ber of significant digits (default = 6).
> signif(1234.567) # Default

[1] 1234.57

> signif(1234.567,2)

[1] 1200

The functions ceiling(x), floor(x), and trunc(x) take a single numeric
argument x and return the smallest integer not less than x, the largest integer not
greater than x, and the integer formed by truncating x toward zero, respectively. If x

10 CALCULATING

is a vector (see below, Section 2.6), these rounding functions work on each element
of the vector.

For presentation, it is often desirable to format numbers with a given number
of digits, commas or other marks separating intervals before the decimal point, in
decimal or scientific format, etc. One can do this using the formatC function.
> options(digits = 7)

> (x = runif(3)) # The outer parentheses cause output to print

[1] 0.4929854 0.5788660 0.2463871

> (x = x + 123456)

[1] 123456.5 123456.6 123456.2

> formatC(x, digits = 2, big.mark = ",", format = "f")

[1] "123,456.49" "123,456.58" "123,456.25"

> formatC(x, digits = 7, big.mark = ",", format = "E")

[1] "1.2345649E+05" "1.2345658E+05" "1.2345625E+05"

Note that these are now character strings, not numbers. See help(formatC) and
help(format) for more information about formatting output.

Because computers work with binary rather than decimal arithmetic, fractions
may not be exactly represented. For example
> .7-.6-.1

[1] -2.78e-17

> .7/.1-7

[1] -8.88e-16

but

> .7/.1

[1] 7

One can “zap” meaningless values close to zero with the zapsmall function:
> zapsmall(.7/.1) - 7

[1] 0

but, of course, one must be cautious in doing so.
R uses the IEEE standard in representing floating-point numbers in 64-bit double

precision. (For details see Jones et al., 2009.) The command .Machine tells us a
variety of things about this standard. The smallest non-zero floating point number
that can be represented is double.xmin, 2.225074×10−308, and the largest floating
point number is double.xmax, 1.797693× 10308. The smallest positive number x
such that 1 + x is not equal to 1 is double.eps, 2.220446× 10−16. The smallest
positive number such that 1− x can be distinguished from 1 is double.neg.eps,
1.110223×10−16. One must exercise care in testing for exact numerical equality if
differences are near double.eps. (See the section on relational operators, below.)

ASSIGNING VARIABLES 11

If a number cannot be represented meaningfully, Inf (infinity) or NaN (not a
number) will generally be returned according to standard computational arithmetic
definitions:
> 1/0

[1] Inf

> log(0)

[1] -Inf

> Inf*Inf

[1] Inf

> Inf/Inf

[1] NaN

> 0/0

[1] NaN

2.4 Assigning variables

To do much useful work in R or any other computer language, one must define vari-
ables and assign values to them. The conventional assignment operator in R is <- ,
but = is also allowed, and is the operator I will use in this book, because it is easier
to type, is akin to usage in most other languages, and avoids typographical disasters
such as x< -y, which will be interpreted as “x is less than minus y” rather than the
intended “give x the value of y.” (On the other hand, do not confuse = with ==, which
means logical equality.)
> theta = pi/4

> st = sin(theta)

> theta

[1] 0.7853982

> asin(st)

[1] 0.7853982

Names of variables in R may consist of lowercase or capital letters, numbers, “.”,
and “ ”. The name must begin with a letter or “.”; and if it begins with “.” the next
character cannot be a number. R is case sensitive, so x and X are different variables.

A simple but handy use for named variables is to convert between units. For ex-
ample, to convert between time units, we can use the definitions (separating multiple
assignments on the same line with semicolons):
> sec. = 1; min. = 60*sec.; hr. = 60*min.; day. = 24*hr.

> week. = 7*day.; yr. = 365.25*day.; century. = 100*yr.

12 CALCULATING

> 3*century./sec.

[1] 9.47e+09

to calculate the (approximate) number of seconds in three centuries. Note that one
divides by the desired unit because the answer is a pure number without units. In
this example I have adopted the arbitrary but useful convention that unit names end
with a period, to avoid conflicts with other potential uses of these variable names.
Another example is to convert between degrees and radians when using trigonometic
functions.
> degree. = pi/180

> sin(30*degree.)

[1] 0.5

R has five sets of built-in constants:
• pi

• LETTERS (the 26 uppercase letters of the Roman alphabet)
• letters (the 26 lowercase letters of the Roman alphabet)
• month.abb (the 3-letter abbreviations of the month names in English)
• month.name (the month names in English)

Although not strictly prohibited, it is not advisable to name variables as “c,” “t,”
“T,” or “F” since these are used in R to combine arguments to form a vector, take the
transpose of a vector or matrix, and stand as abbreviations for TRUE and FALSE.

In this book we will deal with numeric, complex, or logical (TRUE/FALSE) vari-
ables, but R can also deal with character data. We will mainly consider calculations
with vectors and matrices, and occasionally lists (the general form of vectors with
different types of elements); but R has other types of objects as well: data frames,
factors, and arrays (matrices with more than two dimensions).

2.4.1 Listing and removing variables

To find out what variables are currently defined in the R environment, type ls(). To
remove variables when they are no longer needed, type remove(variable.names)
or rm(variable.names). To remove all variables and most other objects, type
rm(list = ls()).

2.5 Relational operators

R has the familiar operators that allow comparison of values, giving TRUE or FALSE
answers: < (less than), > (greater than), <= (less than or equal to), >= (greater than
or equal to), == (identical to), and ! = (not equal to). An example that illustrates the
limitations of precise representation of decimal fractions:
> .5 == 1/2

1] TRUE

> .3/.1 == 3

VECTORS 13

[1] FALSE

To avoid such situations with numerical or complex quantities, use all.equal, a
utility that tests near equality (by default within a tolerance of .Machine$double.
eps0.5) of two R objects:
> all.equal(.3/.1,3)

[1] TRUE

If the operator == or ! = is applied to vectors (see the next section) with n el-
ements, it will generate a logical vector with n TRUE or FALSE values. If what is
wanted is instead a single answer to the question whether the vectors are identical,
use the identical function, which tests for exact equality, instead. (See the subsec-
tion on logical vectors below.)

2.6 Vectors

For nearly all numerical calculations in R, one uses vectors and matrices. Vectors
are the simplest data structure, consisting of an ordered collection of numbers, char-
acters, or logical values that are separated by commas and bracketed by c(), which
stands for “combine” or “concatenate.” A typical numerical vector might be
> x = c(3.2, 1.7, -11.3, -0.67, 4, 0)

A scalar can be thought of as a vector of length 1.

2.6.1 Vector elements and indexes

To select a particular element of a vector, one puts its index in square brackets. For
example, to select the third element of x
> x[3]

[1] -11.3

and to select several elements
> x[1:3]; x[c(2,3,5)]

[1] 3.2 1.7 -11.3

[1] 1.7 -11.3 4.0

The above code illustrates two features of R that are quite different despite their
punctuational similarity. The colon separating two numbers from and to produces a
sequence from from to to in steps of 1 or -1. Thus x[1:3] selects elements 1, 2, and
3 of the vector x. The semicolon separates two assignment statements on the same
line.

To change the value of an element
> x[3] = 10.0

> x

[1] 3.20 1.70 10.00 -0.67 4.00 0.00

To “grow” a vector by adding a new element to its end

14 CALCULATING

> x[7] = 4.3

> x

[1] 3.20 1.70 10.00 -0.67 4.00 0.00 4.30

If an element is skipped in this process, its value will be given as NA (a logical
constant indicating “not available”).
> x[9] = 9

> x

[1] 3.20 1.70 10.00 -0.67 4.00 0.00 4.30 NA 9.00

To remove an element, enter its index with a minus sign.
> x[-8]

[1] 3.20 1.70 10.00 -0.67 4.00 0.00 4.30 9.00

2.6.2 Operations with vectors

Most of the basic numerical operators act on a vector element by element. For exam-
ple, using the vector x defined above,
> x-1

[1] 2.20 0.70 -12.30 -1.67 3.00 -1.00

> 3*x

[1] 9.60 5.10 -33.90 -2.01 12.00 0.00

> x^2

[1] 10.240 2.890 127.690 0.449 16.000 0.000

> cos(x/2)

[1] -0.0292 0.6600 0.8061 0.9444 -0.4161 1.0000

There is also a set of functions that return the length, mean, standard deviation,
minimum, maximum, range, etc., of a vector.
> length(x) # Number of elements in the vector

[1] 6

> mean(x)

[1] -0.512

> sd(x) # Standard deviation

[1] 5.58

> var(x) # Variance, sd^2

[1] 31.1

> min(x)

[1] -11.3

VECTORS 15

> range(x)

[1] -11.3 4.0

> sum(x)

[1] -3.07

> prod(x)

[1] 0

> cumsum(x) # Cumulative sum

[1] 3.20 4.90 -6.40 -7.07 -3.07 -3.07

> cumprod(x) # Cumulative product

[1] 3.20 5.44 -61.47 41.19 164.74 0.00

The function summary gives the minimum and maximum (hence the range), 1st
and 3rd quartiles, median, and mean of vector elements regarded as data; but, unfor-
tunately, not the standard deviation or variance.
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-11.30 -0.50 0.85 -0.51 2.82 4.00

A vector y may act on a vector x. If y is shorter than x, y is recycled until a vector
with the length of x is obtained, with a warning message if the recycling is fractional.
For example
> x1 = c(1,2,3,4,5)

> y1 = c(1,2)

> x1*y1

[1] 1 4 3 8 5

Warning message:

In x1 * y1 :

longer object length is not a multiple of shorter object length

2.6.3 Generating sequences

Vectors are simply sequences of numbers. Sometimes these numbers will be data, but
often we will want to generate sequences for simulations. These sequences of num-
bers might be evenly spaced, e.g., time points in a simulation of chemical reaction
kinetics. Or they might be random, as in a Monte Carlo simulation.

2.6.3.1 Regular sequences

The colon operator generates a sequence of numbers separated by 1 or -1.
> 1:10

16 CALCULATING

[1] 1 2 3 4 5 6 7 8 9 10

> 5.7:-3.7

[1] 5.7 4.7 3.7 2.7 1.7 0.7 -0.3 -1.3 -2.3 -3.3

A common mistake is to forget that the colon has higher priority than other arith-
metic operations.
> n = 10

> 1:n-1

[1] 0 1 2 3 4 5 6 7 8 9

> 1:(n-1)

[1] 1 2 3 4 5 6 7 8 9

If an increment different from 1 is desired, use seq(from, to, by). If the
parameters are given in this order, their names may be omitted, but if a different
order is used, the names are required. (This is true of all functions in R.)
> seq(3,8,.5)

[1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

> seq(by=0.45,from=2.7,to=6.7)

[1] 2.70 3.15 3.60 4.05 4.50 4.95 5.40 5.85 6.30

The number of elements may be specified by length.out, which is often abbre-
viated to length or simply len.
> seq(-pi,pi,length.out=12) # 12 values between -pi and pi

[1] -3.142 -2.570 -1.999 -1.428 -0.857 -0.286 0.286 0.857

[9] 1.428 1.999 2.570 3.142

2.6.3.2 Repeating values

The rep function repeats values in a sequence.
> y = 2; rep(y,5) # Or rep(y, times=5)

[1] 2 2 2 2 2

> w = c(4,5); rep(w,5) # Repeats w

[1] 4 5 4 5 4 5 4 5 4 5

> rep(w, each=5) # Repeats each term in w

[1] 4 4 4 4 4 5 5 5 5 5

2.6.3.3 Sequences of random numbers

Sequences of random numbers are often used in simulations. R has many different
probability distributions from which random numbers can be drawn, but two are most
commonly used: uniformly distributed random numbers, and normally distributed
random numbers.

VECTORS 17

A sequence of n random numbers uniformly distributed between min and max is
generated by runif(n, min, max). If min and max are not specified, the defaults
are 0 and 1.
> runif(6,-2,2)

[1] 0.0590 -0.0343 -0.2844 -0.0167 1.3273 -0.8960

> runif(6)

[1] 0.176 0.235 0.316 0.656 0.817 0.636

Likewise, a sequence of n random numbers drawn from a normal distribution
with mean mean and standard deviation sd is generated by rnorm(n, mean, sd).
If mean and sd are not specified, the defaults are 0 and 1.
> rnorm(6,9,1.5)

[1] 7.36 9.49 10.79 8.59 11.90 6.44

> rnorm(6)

[1] -1.103 -0.849 1.148 1.460 -0.831 0.919

In a common simulation scenario, one wants to generate a sequence of values
with normally distributed random error of fixed standard deviation. For example:
> x = 1:6

> err = rnorm(6,0,0.1) # mean of error = 0, sd = 0.1

> x + err # "experimental" result

[1] 1.01 1.78 3.07 4.11 5.01 5.80

Instead, it may be desired to generate a sequence with given relative error:
> x*(1+err)

[1] 1.01 1.56 3.21 4.44 5.06 4.79

Usually R sets the seed for a sequence of random numbers based on the system
clock. To set a specific integer seed, e.g., to check the reproducibility of a calculation
involving random numbers, use the set.seed function. For example
> set.seed(123)

> round(rnorm(5),3)

[1] -0.560 -0.230 1.559 0.071 0.129

2.6.4 Logical vectors

Sometimes we want to pick out those elements of a vector that obey some criterion.
Suppose we generate a vector v of random numbers and want to pick out those ele-
ments that are greater than 0. (Enclosing the expression below in parentheses causes
the result to print.)
> (v = runif(8,-3,3))

[1] -1.68 1.97 -1.38 1.87 -2.42 -0.74 -0.16 1.25

The statement v > 0 will generate a vector the length of v whose elements indicate
whether each element of v obeys the criterion.

18 CALCULATING

> v > 0

[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE

The which function gives the index of each element that satisfies the criterion.
> which(v > 0)

[1] 2 4 8

A vector consisting of only those elements that satisfy the criterion can be con-
structed as follows.
> v[v > 0]

[1] 1.97 1.87 1.25

Two vectors will usually be compared using the logical operator ==. But just as
we saw above with scalars, round-off error may lead to small differences, hence strict
inequality, when fractions are concerned. The all.equal test may be more useful.
> v1 = seq(.1,.6,.1)/.1; v1

[1] 1 2 3 4 5 6

> w1 = 1:6; w1

[1] 1 2 3 4 5 6

> v1 == w1

[1] TRUE TRUE FALSE TRUE TRUE FALSE

> all.equal(v1,w1)

[1] TRUE

2.6.5 Speed of forming large vectors

When vectors have relatively few elements, the speed of forming them is generally
inconsequential. However, if there are tens of thousands of elements, then there may
be significant differences in program execution time depending on how the vector
elements are formed. If the vector is initially defined as a scalar, and then expanded
one element at a time, R has to reallocate computer memory at each step. On the other
hand, if the length of the vector is known ahead of time, memory can be allocated at
the beginning, and then the process is much faster.

We compare the timing of two ways of extending a vector using a for loop (see
Chapter 4 on Functions and Programming) with the function system.time .
> n=10000 # length of vector

> v = 1 # value of first element, starting as a scalar

Extending v one element at a time

> system.time(for (i in 2:n) v[i] = i)

user system elapsed

0.250 0.203 0.560

VECTORS 19

Allocate n places in memory initially:

> v1 = numeric(n)

Now fill those places

> system.time(for (i in 2:n) v1[i] = i)

user system elapsed

0.034 0.002 0.068

Even faster is using the sequence function:
> system.time({v2 = 1:n})

user system elapsed

0 0 0

> head(v2)

[1] 1 2 3 4 5 6

> tail(v2)

[1] 9995 9996 9997 9998 9999 10000

The head and tail functions are useful for checking the beginning and end of very
large vectors without printing the entire vector.

2.6.6 Vector dot product and crossproduct

Up to this point we have been using the standard R meaning of “vector” as a one-
dimensional list of numbers. However, a scientist or engineer might expect “vec-
tor” to mean a quantity having direction as well as magnitude, typically specified
by a triplet of numbers denoting the projections of the vector along three orthogonal
axes, e.g., (x,y,z) in Cartesian coordinates. We will denote these vectors by lower-
case bold-face names. Two standard operations on such vectors are dot product and
cross product. R does not have built-in functions for these operations, but it is easy
to construct them.

Consider two vectors u and v, defined by the triplets (u1,u2,u3) and (v1,v2,v3)
respectively. Their dot product is u ·v = u1v1 + u2v2 + u3v3. This can be written in R
as the function
> dot = function(u,v) as.numeric(u%*%v)

where the as.numeric function is needed to coerce the result from a 1×1 matrix to
a scalar. The magnitude or Euclidian norm of v can then be written as the function
> vecnorm = function(v) sqrt(dot(v,v))

For example,
> u = c(1,2,3)

> v = c(4,5,6)

> dot(u,v)

[1] 32

20 CALCULATING

> vecnorm(u) # sqrt(1^2 + 2^2 +3^2) = sqrt(14)

[1] 3.742

Note that the magnitude of v might also be called its length, but in R the length
of a vector is its number of elements, not its magnitude. R has a function norm to
calculate any one of several norms of a matrix. (Type ?norm for details.) We can
use it to calculate the Euclidian norm of a vector by converting the vector to a (one-
dimensional) matrix and choosing the Frobenius option “F” or “f”:
> norm(as.matrix(u),"F")

[1] 3.742

The crossproduct of two three-dimensional vectors is calculated with the function
> cross = function(u,v) {c(u[2]*v[3]-u[3]*v[2],

+ u[3]*v[1]-u[1]*v[3], u[1]*v[2]-u[2]*v[1])}

> cross(u,v)

[1] -3 6 -3

Note that "+" is added automatically to the beginning of the next line when the
preceding line does not form a complete statement, in this case because it ends with
a comma.

R has a function crossprod that, when operating on vectors, behaves like dot

(but yields a 1× 1 matrix). See below for its use in matrix multiplication, and
?crossprod for details. To add to the confusion, R already has a function dot

that, in the plotmath package for annotating graphics, yields “x with a dot.” It’s
important not to confuse these usages.

More convenient, since we will be using it in a variety of contexts, may be to
install and load the add-on package pracma, which contains the expected vector dot
and crossproducts.
> install.packages("pracma") # If not already installed

> require(pracma)

Loading required package: pracma

Attaching package: pracma

The following objects are masked _by_ .GlobalEnv:

cross, dot

Note that pracma now superimposes its definition of dot over the base R definition
as well as over the functions we have just defined.

> u = c(1,2,3)

> v = c(4,5,6)

> dot(u,v)

[1] 32

> cross(u,v)

[1] -3 6 -3

MATRICES 21

The reader is urged to type cross (without the ?) to see how the definition of this
function is implemented in pracma: essentially the same as above.

2.7 Matrices

Matrices—two-dimensional arrays of numbers—are ubiquitous in numerical analy-
sis, and R has an extensive set of functions for dealing with them.

2.7.1 Forming matrices

A matrix may be constructed in R as follows:
> (m = matrix(c(3,-4.2,-7.1,0.95),nrow=2,ncol=2))

[,1] [,2]

[1,] 3.0 -7.10

[2,] -4.2 0.95

nrow is the number of rows, ncol the number of columns. Note that R, by de-
fault, fills the matrix in column order. If row order is desired, it must be specified
by byrow=TRUE):
> (m = matrix(1:6, nrow=2, byrow=T))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Given six elements and two rows, R is smart enough to figure out that there should
be three columns.

When printed out, the matrix is flanked by row and column indices. A particular
element i,j is specified by its row and column indices in square brackets, while
whole rows or columns are specified by [i,] and [,j], respectively.
> m[2,3]

[1] 6

> m[2,]

[1] 4 5 6

> m[,3]

[1] 3 6

A matrix may also be formed by binding together row (rbind) or column
(cbind) vectors. For example,
> x = 1:3; y = 1:3

> rbind(x,y)

[,1] [,2] [,3]

x 1 2 3

y 1 2 3

22 CALCULATING

> cbind(x,y)

x y

[1,] 1 1

[2,] 2 2

[3,] 3 3

A diagonal matrix is constructed using diag:
> diag(c(4,6,5))

[,1] [,2] [,3]

[1,] 4 0 0

[2,] 0 6 0

[3,] 0 0 5

so an n×n unit matrix can be constructed by diag(rep(1,n)):
> diag(rep(1,3))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Similarly, a 3×3 matrix with all zeros is constructed by
> matrix(rep(0,9), nrow=3)

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

The outer() operator forms an m× n matrix by combining two vectors of
lengths m and n according to a function specified by FUN. The default function is
”*”.
> x = 1:3; y = 1:3

> outer(x,y)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

> outer(x,y,FUN="+")

[,1] [,2] [,3]

[1,] 2 3 4

[2,] 3 4 5

[3,] 4 5 6

Here’s an easy way to use outer() to make a table (actually a matrix) of powers
of integers:

MATRICES 23

> x = 1:9; y = 2:8

> names(x)=x; names(y)=y

> outer(y,x,"^")

1 2 3 4 5 6 7 8 9

2 2 4 8 16 32 64 128 256 512

3 3 9 27 81 243 729 2187 6561 19683

4 4 16 64 256 1024 4096 16384 65536 262144

5 5 25 125 625 3125 15625 78125 390625 1953125

6 6 36 216 1296 7776 46656 279936 1679616 10077696

7 7 49 343 2401 16807 117649 823543 5764801 40353607

8 8 64 512 4096 32768 262144 2097152 16777216 134217728

The kronecker function is useful for constructing block matrices. Given
two matrices M1 and M2, kronecker(M1,M2) returns a matrix with dimensions
dim(M1)*dim(M2).
> (M1 = matrix(1:4,2,2))

[,1] [,2]

[1,] 1 3

[2,] 2 4

> (M2 = diag(1,2))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> kronecker(M1,M2)

[,1] [,2] [,3] [,4]

[1,] 1 0 3 0

[2,] 0 1 0 3

[3,] 2 0 4 0

[4,] 0 2 0 4

> kronecker(M2,M1)

[,1] [,2] [,3] [,4]

[1,] 1 3 0 0

[2,] 2 4 0 0

[3,] 0 0 1 3

[4,] 0 0 2 4

A submatrix can be formed from a larger matrix by putting the desired row and
column indices in square brackets.
> (m3 = matrix(1:9,3,3,byrow=T))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

24 CALCULATING

> m3[1:2,c(1,3)]

[,1] [,2]

[1,] 1 3

[2,] 4 6

If the rows and columns of a matrix arise from a series of measurements, as in
a database where each row corresponds to a subject and each column to a particular
measurement, it may be convenient to give the rows and columns descriptive names.
(See the discussion of data.frame in Chapter 10.) rownames and colnames are
used for this purpose. For example, using the matrix m defined above:
> rownames(m) = c("A","B")

> colnames(m) = c("v1","v2","v3")

> m

v1 v2 v3

A 1 2 3

B 4 5 6

The rows or columns may then be queried individually by name, e.g.,
> m[,"v1"]

A B

1 4

> summary(m[,"v1"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.75 2.50 2.50 3.25 4.00

The names can also be assigned when the matrix is constructed:
> m = matrix(1:6, nrow=2, ncol=3, byrow=T,

+ dimnames = list(c("A","B"),c("v1","v2","v3")))

2.7.2 Operations on matrices

2.7.2.1 Arithmetic operations on matrices

As with vectors, simple operations on matrices are applied individually to each ele-
ment.
> m-2

v1 v2 v3

A -1 0 1

B 2 3 4

> m/5

v1 v2 v3

A 0.2 0.4 0.6

B 0.8 1.0 1.2

MATRICES 25

> options(digits=3)

> sqrt(m)

v1 v2 v3

A 1 1.41 1.73

B 2 2.24 2.45

> m^(-1)

v1 v2 v3

A 1.00 0.5 0.333

B 0.25 0.2 0.167

If two matrices are combined by simple operations, assuming their row and col-
umn dimensions match, the operations are applied to the individual elements.
> m+m

v1 v2 v3

A 2 4 6

B 8 10 12

> m/m

v1 v2 v3

A 1 1 1

B 1 1 1

2.7.2.2 Matrix multiplication

Multiplication of two matrices M1 and M2 to get a new matrix M3 is defined as

M31 j =
n

∑
k=1

M1ikM2k j (2.1)

where n is the number of columns of M1, which must equal the number of rows of
M2.

The R operator for matrix multiplication is %*%. For example,
> M1 = matrix(runif(9),3,3); M1

[,1] [,2] [,3]

[1,] 0.261 0.338 0.176

[2,] 0.402 0.786 0.827

[3,] 0.899 0.765 0.340

> M2 = matrix(runif(9),3,3); M2

[,1] [,2] [,3]

[1,] 0.0844 0.00498 0.478

[2,] 0.8571 0.80753 0.505

[3,] 0.9829 0.18913 0.133

26 CALCULATING

> M3 = M1 %*% M2; M3

[,1] [,2] [,3]

[1,] 0.485 0.308 0.319

[2,] 1.520 0.793 0.699

[3,] 1.066 0.687 0.861

2.7.2.3 Transpose and determinant

The transpose of a matrix is denoted by t:

> t(M1)

[,1] [,2] [,3]

[1,] 0.261 0.402 0.899

[2,] 0.338 0.786 0.765

[3,] 0.176 0.827 0.340

and the determinant (of a square matrix) by det:
> det(M1)

[1] 0.0395

2.7.2.4 Matrix crossproduct

The twin functions crossprod and tcrossprod are slightly faster ways of multi-
plying a matrix by the transpose of another matrix.
> A = matrix(1:4,2,2)

> B = matrix(5:8,2,2)

> crossprod(A,B)

[,1] [,2]

[1,] 17 23

[2,] 39 53

> t(A) %*% B

[,1] [,2]

[1,] 17 23

[2,] 39 53

> tcrossprod(A,B)

[,1] [,2]

[1,] 26 30

[2,] 38 44

> A %*% t(B)

[,1] [,2]

[1,] 26 30

[2,] 38 44

MATRICES 27

Type ?crossprod for more details.

2.7.2.5 Matrix exponential

Both the pracma and Matrix packages provide the function expm that computes
the exponential of a matrix, formally defined as the infinite Taylor series exp(A) =
I + A + A2/2! + A3/3! + . . . For example,
> require(Matrix)

> (A = matrix(1:4,2,2))

[,1] [,2]

[1,] 1 3

[2,] 2 4

> expm(A)

2 x 2 Matrix of class "dgeMatrix"

[,1] [,2]

[1,] 51.97 112.1

[2,] 74.74 164.1

dgeMatrix is the “standard” class for dense numeric matrices in the Matrix pack-
age. Type help(package = "Matrix") for more details. The matrix exponential
function may be used to solve sets of first-order, linear differential equations, whose
formal solutions are often sums of exponential functions.

2.7.2.6 Matrix inverse and solve

The functions solve and eigen are central to numerical analysis of linear algebraic
systems. These and related matrix functions are handled in R via the standard LA-
PACK code. According to its website, http://www.netlib.org/lapack/,

LAPACK is written in Fortran 90 and provides routines for solving systems
of simultaneous linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are
also provided, as are related computations such as reordering of the Schur fac-
torizations and estimating condition numbers. Dense and banded matrices are
handled, but not general sparse matrices. In all areas, similar functionality is
provided for real and complex matrices, in both single and double precision.
The inverse of a square matrix is computed using the solve function.

> (M1_inv = solve(M1))

[,1] [,2] [,3]

[1,] -9.23 0.502 3.57

[2,] 15.34 -1.767 -3.66

[3,] -10.10 2.645 1.75

Applying solve to this result should yield the original matrix, which it appears
to:

28 CALCULATING

> solve(solve(M1))

[,1] [,2] [,3]

[1,] 0.261 0.338 0.176

[2,] 0.402 0.786 0.827

[3,] 0.899 0.765 0.340

but equality is not exact due to round-off error.
Test for exact equality

> identical(M1, solve(solve(M1)))

[1] FALSE

Equality to within machine precision

> all.equal(M1, solve(solve(M1)))

[1] TRUE

The most familiar use of matrix inversion is to solve sets of linear algebraic equa-
tions, as will be discussed in Chapter 5. Here we give a brief demonstration. Consider
the system of three equations in three unknowns:

x1 +
1
2

x2 +
1
3

x3 = 1 (2.2)

1
2

x1 +
1
3

x2 +
1
4

x3 = 0 (2.3)

1
3

x1 +
1
4

x2 +
1
5

x3 = 0 (2.4)

This can be written in matrix form as1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

x1
x2
x3

 =

1
0
0

 (2.5)

or in compact form as
Ax = b (2.6)

Premultiplying both sides by A−1,

A−1Ax = x = A−1b (2.7)

Using R, we solve for x by
> A = matrix(c(1,1/2,1/3,

+ 1/2,1/3,1/4,

+ 1/3,1/4,1/5),

+ nrow=3, byrow=T)

> Ainv = solve(A)

> b = c(1,0,0)

> (x = Ainv %*% b)

MATRICES 29

[,1]

[1,] 9

[2,] -36

[3,] 30

> A %*% x # Check result

[,1]

[1,] 1.00e+00

[2,] 8.88e-16

[3,] 0.00e+00

R also provides a much simpler and more compact way of doing the same thing,
with the added advantage that the result is a vector rather than a 3×1 matrix:
> solve(A,b)

[1] 9 -36 30

2.7.2.7 Eigenvalues and eigenvectors

The eigenvalues and eigenvectors of a square matrix are obtained by the eigen func-
tion.
> eigen(M1)

$values

[1] 1.63+0.0i -0.12+0.1i -0.12-0.1i

$vectors

[,1] [,2] [,3]

[1,] 0.263+0i -0.292-0.149i -0.292+0.149i

[2,] 0.737+0i 0.695+0.000i 0.695+0.000i

[3,] 0.622+0i -0.620+0.156i -0.620-0.156i

Note that eigen computes both real and imaginary parts as required. To get the
eigenvectors alone, use
> eigen(M1)$values

[1] 1.63+0.0i -0.12+0.1i -0.12-0.1i

A square, symmetric matrix is an example of a Hermitian matrix. It can be
proved, and is important in quantum mechanics, that the eigenvalues of a Hermi-
tian matrix are real and the eigenvectors are orthonormal (mutually perpendicular
and of unit length). We can demonstrate these properties with a particular numerical
example.
> H = matrix(c(1,2,3,

+ 2,5,-1,

+ 3,-1,7),3,3,byrow=T)

> (Hval = eigen(H)$values)

[1] 8.25 5.81 -1.06

> (Hvec = eigen(H)$vectors)

30 CALCULATING

[,1] [,2] [,3]

[1,] -0.3676 -0.3422 0.865

[2,] 0.0593 -0.9366 -0.345

[3,] -0.9281 0.0756 -0.365

> Hvec[,1]%*%Hvec[,1]

[,1]

[1,] 1

> Hvec[,2]%*%Hvec[,2]

[,1]

[1,] 1

> Hvec[,3]%*%Hvec[,3]

[,1]

[1,] 1

> Hvec[,1]%*%Hvec[,2]

[,1]

[1,] -2.91e-16

> Hvec[,1]%*%Hvec[,3]

[,1]

[1,] 5.55e-17

> Hvec[,2]%*%Hvec[,3]

[,1]

[1,] -2.15e-16

More generally, a square matrix with complex elements is Hermitian if the ele-
ment in the i-th row and j-th column is equal to the complex conjugate of the element
in the j-th row and i-th column, for all indices i and j. In this case, the eigenvalues
are real and the eigenvectors are orthonormal with their complex conjugates. For
example:
> Hi = matrix(c(1,2+7i,3,

+ 2-7i,5,-1,

+ 3,-1,7),3,3,byrow=T)

> (Hival = eigen(Hi)$values)

[1] 11.35 6.77 -5.12

> (Hivec = eigen(Hi)$vectors)

[,1] [,2] [,3]

[1,] 0.594+0.000i -0.160+0.000i 0.788+0.000i

[2,] 0.127-0.679i -0.395+0.182i -0.176+0.549i

[3,] 0.380+0.156i 0.379+0.801i -0.210+0.045i

> Hivec[,1]%*%Conj(Hivec[,1])

[,1]

[1,] 1+0i

MATRICES 31

> Hivec[,1]%*%Conj(Hivec[,2])

[,1]

[1,] -5.55e-17-2.78e-17i

Of course, the fact that the imaginary parts that should be zero are not exactly so in
these calculations shows the limitations of representing decimal numbers in binary
arithmetic.

2.7.2.8 Singular value decomposition

Singular value decomposition, or SVD, is useful for dealing with matrices that are
either singular (determinant = 0) or nearly so (ill-conditioned).1 Applying the R func-
tion svd to an m× n matrix X decomposes it into the product of three matrices, X
= UDVt where X is an m× n matrix, D is an n× n diagonal matrix, and Vt is the
transpose of an n×n matrix.

If X is a square matrix, svd(X) and eigen(X) give essentially identical results.
We illustrate with the Hilbert matrix used in the svd help example, a square matrix in
which the i, j element is 1/(i+ j−1). The Hilbert matrix is notoriously ill-conditioned
for moderate and larger n. It may be defined in R for arbitrary n by the function
> hilbert = function(n) {i=1:n; 1/outer(i-1,i,"+")}.

(Accept this on faith for now. We shall discuss how to define functions in Chapter 4.)
Let us begin with a small value, n = 4.

> (h4 = hilbert(4))

[,1] [,2] [,3] [,4]

[1,] 1.000 0.500 0.333 0.250

[2,] 0.500 0.333 0.250 0.200

[3,] 0.333 0.250 0.200 0.167

[4,] 0.250 0.200 0.167 0.143

> s4 = svd(h4)

> s4

$d

[1] 1.50e+00 1.69e-01 6.74e-03 9.67e-05

$u

[,1] [,2] [,3] [,4]

[1,] -0.793 0.582 -0.179 -0.0292

[2,] -0.452 -0.371 0.742 0.3287

[3,] -0.322 -0.510 -0.100 -0.7914

[4,] -0.252 -0.514 -0.638 0.5146

$v

[,1] [,2] [,3] [,4]

[1,] -0.793 0.582 -0.179 -0.0292

[2,] -0.452 -0.371 0.742 0.3287

[3,] -0.322 -0.510 -0.100 -0.7914

1www.math.umn.edu/∼lerman/math5467/svd.pdf

32 CALCULATING

[4,] -0.252 -0.514 -0.638 0.5146

Recover h4:

> s4$u %*% diag(s4$d) %*% t(s4$v)

[,1] [,2] [,3] [,4]

[1,] 1.000 0.500 0.333 0.250

[2,] 0.500 0.333 0.250 0.200

?[3,] 0.333 0.250 0.200 0.167

[4,] 0.250 0.200 0.167 0.143

Compare with the eigenanalysis of h4:
> eigen(h4)

$values

[1] 1.50e+00 1.69e-01 6.74e-03 9.67e-05

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.793 0.582 -0.179 -0.0292

[2,] 0.452 -0.371 0.742 0.3287

[3,] 0.322 -0.510 -0.100 -0.7914

[4,] 0.252 -0.514 -0.638 0.5146

Thus svd and eigen give essentially the same numerical results for square, sym-
metric matrices, though they are not strictly identical because of the different steps
taken to arrive at those results:
> eigen(h4)$values == svd(h4)$d

[1] FALSE FALSE FALSE FALSE

> all.equal(eigen(h4)$values, svd(h4)$d)

[1] TRUE

Whether a matrix is ill-conditioned may be judged from its 2-norm condition
number, the ratio of its largest to its smallest singular values (equivalently, the ratio
of its largest to smallest eigenvalues). We abbreviate this ratio as cn, and define it as
a function for our Hilbert matrices:
> cn = function(n) max(svd(hilbert(n))$d)/

+ min(svd(hilbert(n))$d)

> cn(5)

[1] 476607

> cn(6)

[1] 14951059

Even matrix dimensions of 5 x 5 and 6 x 6 have high condition numbers, and
are dangerously ill-conditioned. This can also be seen from the determinants of the
matrices:
> det(hilbert(5))

[1] 3.75e-12

> det(hilbert(6))

[1] 5.37e-18

where the determinant of hilbert(6) is below machine precision.

MATRICES 33

If the matrix X is not square, its eigenvalues and eigenvectors cannot be com-
puted, but singular value decomposition is still applicable. If m > n, there are more
equations than unknowns and the system is overdetermined. In this case m−n of the
singular values will be zero. This is the case in the example for svd help, where the
matrix hilbert(9)[,1:6] has nine rows and six columns. More importantly, it is
the case in the least squares fitting of data, where there are typically more measure-
ments than parameters to be fit.

If m < n there are more unknowns than equations and the system is underde-
termined. Then there will be no unique solution, but instead an infinite (n−m)-
dimensional family of solutions. For svd(hilbert(9)[1:6,]), R picks the same
solution as it did for svd(hilbert(9)[, 1:6]), but this will not generally be the
case for unsymmetrical matrices.

2.7.3 The Matrix package

The Matrix package has “recommended” priority. That is, it is included with all
recent distributions of R, but needs to be loaded with a library or requires func-
tion. It implements “[c]lasses and methods for dense and sparse matrices and oper-
ations on them using Lapack and SuiteSparse.” The Matrix package preserves the
sparseness of matrices as successive operations are performed, which may provide
substantial improvement in computational speed and memory utilization for the very
large matrices that are frequently encountered in real-world applications. However,
for the standard solution of large sets of linear equations involving common tridi-
agonal, banded, and block matrices, limSolve (see Chapter 5) may be a simpler
choice.

Consider computing the eigenvalues of the large, sparse matrix CAex used as an
example in the Matrix documentation. CAex is a 72×72 symmetric matrix with 216
non-zero entries (4.17% of the total) in five bands. It is stored as a sparse matrix of
class dgCMatrix.

> library(Matrix)

> data(CAex)

> image(CAex)

We calculate the eigenvalues of CAex with the eigen function, using the option
only.values = TRUE (the default is FALSE) since calculating the eigenfunctions
takes the majority of the computation time.
> CAex.eigval=eigen(CAex, only.values=TRUE)$values

> zapsmall(CAex.eigval)

[1] 1

[29] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[57] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For a discussion of relative speeds of matrix calculations in base R and in the
Matrix package, see http://cran.r-project.org/web/packages/Matrix/
vignettes/Comparisons.pdf.

34 CALCULATING

Dimensions: 72 x 72
Column

R
ow

20

40

60

20 40 60

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 2.1: Image plot of sparse banded matrix CAex.

2.7.4 Additional matrix functions and packages

The base R installation has the standard QR (qr) and Cholesky (chol) decomposi-
tion functions for matrix manipulation. Since these are mainly used in linear algebra
and linear regression applications, we shall delay discussing these functions until
Chapter 5.

2.8 Time and date calculations

R has numerous functions to manipulate times and dates. It is frequently desired to
determine how long a given process takes. This can be done with the system.time
function, which is wrapped around the code for the process of interest. For example,
to sum the results of evaluations of the sines of ten million uniformly distributed
random numbers:
> system.time(cumsum(sin(runif(1e7))))

user system elapsed

0.687 0.064 0.746

“user” is the number of CPU seconds spent running R, “system” is the number
of CPU seconds spent running the operating system, and “elapsed” is the clock
time, which may be greater than the sum of “user” and “system” if the computer is
simultaneously running other processes.

The system.time function is one of the few instances in which "=" cannot be
substituted for "<-" in an assignment statement.
> system.time(cs <- cumsum(sin(runif(1e7))))

user system elapsed

0.606 0.015 0.617

> system.time(cs = cumsum(sin(runif(1e7))))

TIME AND DATE CALCULATIONS 35

Error in system.time(cs = cumsum(sin(runif(1e+07)))) :

unused argument(s) (cs = cumsum(sin(runif(1e+07))))

To get the current date, type Sys.Date(). To specify some other date, and get
the number of days difference,
> Earlier.Date = as.Date("1/1/2011", "%m/%d/%Y")

> Sys.Date() - Earlier.Date # As of 10/04/2013

Time difference of 1007 days

Descriptions of the classes ”POSIXlt” and ”POSIXct” representing calendar
dates and times (to the nearest second), and various ways to specify and calculate
with these quantities, may be obtained by typing ?DateTimeClasses. To learn how
to compute time differences, type ?difftime.

Chapter 3

Graphing

It is not traditional for a book on numerical methods to devote much space to graph-
ing of data and functions. Yet graphing is an essential part of scientific and engineer-
ing work, and R has very strong graphics tools. Therefore, we include a chapter on
the topic here. Two recent books on graphing with R are
• Paul Murrell, R Graphics, Second Edition, Chapman & Hall/CRC, 2011
• Hrishi V. Mittal, R Graphs Cookbook, Packt Publishing, 2011

3.1 Scatter plots

Perhaps the most common type of plot encountered in the scientific and engineering
literature is the scatter plot of a dependent variable y measured or evaluated at a set
of discrete points of an independent variable x. As an example, we simulate measure-
ment of the function y = x2e−x/2 over the x-range 0–10 with 5% normally distributed
random error.
> set.seed(123) # Enables reproducible random number generation

> x = 1:10

> y = x^2*exp(-x/2)*(1+rnorm(n=length(x), mean=0, sd=0.05))

> par(mfrow=c(1,2)) # Plots in 1 row, 2 columns

> plot(x,y)

This gives a plot (Figure 3.1, left) suitable for initial inspection of the data, but
not for formal presentation or even recording in a lab notebook. At a minimum, one
will want to label the axes more informatively with xlab and ylab, and provide a
title with main. In addition, one may want to change the point symbol with pch and
make the points smaller with cex.

> plot(x,y, pch=19, cex=0.7, xlab="Time, sec",

+ ylab = "Signal Intensity", main = "Detector Output")

This gives the much better Figure 3.1, right.
By default, R plots (x,y) pairs as points, but lines (type="l") and overlays

(type="o") are also useful (Figure 3.2).
> set.seed(123) # Enables reproducible random number generation

> x = seq(from=0, to=10, by=0.1) # More closely spaced points

> y = x^2*exp(-x/2)*(1+rnorm(n=length(x), mean=0, sd=0.05))

37

38 GRAPHING

0 2 4 6 8 10

0.
0

1.
0

2.
0

x

y

0 2 4 6 8 10

0.
0

1.
0

2.
0

Detector Output

Time, sec
S

ig
na

l I
nt

en
si

ty

Figure 3.1: Left: Default data plot; Right: Refined data plot.

> par(mfrow=c(1,2))

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> plot(x,y, type = "l")

> plot(x,y, type = "o")

> par(mfrow=c(1,1))

As we shall discuss in a few pages, R allows much greater customization of
graphs than the few elementary steps we have shown here. However, from now on we
will generally use the par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

parameter setting to make the graphs more compact and to place the ticks within the
graph, as is standard in most scientific work. Explanation of these parameters will be
found in Section 3.4.2.

0 2 4 6 8 10

0.
0
0.
5
1.
0
1.
5
2.
0

x

y

0 2 4 6 8 10

0.
0
0.
5
1.
0
1.
5
2.
0

x

y

Figure 3.2: Left: plot(x,y,type="l"); Right: plot(x,y,type="o").

FUNCTION PLOTS 39

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

x

x^
2

*
ex

p(
-x

/2
)

0 2 4 6 8 10

0.
0
0.
5
1.
0
1.
5
2.
0

Detector Output

Time, sec

S
ig

na
l I

nt
en

si
ty

Figure 3.3: Left: Function plot using curve; Right: Function plot superimposed on data
points.

3.2 Function plots

R enables plotting of functions of the variable x with the command curve. For ex-
ample, to plot the function used to generate the data above, we write
> curve(x^2*exp(-x/2),0,10)

with the result shown in Figure 3.3, left. To superimpose the curve on the data points,
we plot the data first, then generate the curve with the condition add = TRUE:
> plot(x,y, pch=19, cex=0.7, xlab="Time, sec",

+ ylab = "Signal Intensity", main = "Detector Output")

> curve(x^2*exp(-x/2),0,10, add=T)

as seen in Figure 3.3, right.
The command curve() works only with the variable x, and if given a function

with no argument will assume that the argument is x, as in
> curve(sin,-4*pi,4*pi)

where we note that R provides x in the axis labels even though we did not specify it
(Figure 3.4).

-10 -5 0 5 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

si
n(
x)

Figure 3.4: The function sin plotted without specifying the independent variable.

40 GRAPHING

0.0 0.5 1.0 1.5 2.0

-1
.5

-0
.5

0.
5

x

1
- x

 +
 x

^2
/2

 -
x^

3/
3

Figure 3.5: curve plot of a polynomial with points added.

On the other hand, the code
> curve(x)

generates the error message
Error in eval(expr, envir, enclos) : could not find function "x"

because R is unsure whether x is a function or a variable.
Just as we could superimpose a function curve on a scatter plot with the

curve(..., add=T) command, we can superimpose points on a function plot with
the points() command. In Figure 3.5, for example, are evenly spaced points im-
posed on a polynomial curve.
> curve(1-x+x^2/2-x^3/3,0,2)

> x = seq(0,2,.4)

> y = 1-x+x^2/2-x^3/3

> points(x,y)

In similar fashion, connected line segments could be added to a plot of points
with the lines() function. See ?lines for an example using data from the cars

dataset in the R base package.

3.3 Other common plots

Other common ways of graphically representing scientific and engineering data are
bar charts and histograms. In this section we show how to construct such plots in R.
We also introduce box plots, which may be less familiar but which provide useful
summaries of data.

3.3.1 Bar charts

Bar charts are known in R as barplots. For example, suppose a nutritionist is doing
a feeding study using feeds A and B. She measures the average weight of two groups
of mice, one group fed A and the other B, each week for three weeks, with results as
indicated in the following code and shown in Figures 3.6 and 3.7.

OTHER COMMON PLOTS 41

1 2 3

Feed
B
A

Weight Gain by Week

Week

gr
am

s
ga

in
ed

0
2

4
6

8
10

12
14

A B

Week
3
2
1

Weight Gain by Feed

Feed

gr
am

s
ga

in
ed

0
5

10
15

20

Figure 3.6: Stacked bar plots using beside = FALSE default option.

> A = c(3,4,4)

> B = c(6,8,10)

> feed = matrix(c(A,B), nrow=2, byrow=TRUE,

+ dimnames= list(c("A","B"), c("1","2","3")))

> feed # Check that we’ve set up the matrix correctly

1 2 3

A 3 4 4

B 6 8 10

1 2 3

Feed
A
B

Weight Gain by Week

Week

gr
am

s
ga

in
ed

0
2

4
6

8
10

A B

Week
1
2
3

Weight Gain by Feed

Feed

gr
am

s
ga

in
ed

0
2

4
6

8
10

Figure 3.7: Bar plots using beside = TRUE option.

42 GRAPHING

Now plot stacked barplots using the default beside = FALSE option, emphasiz-
ing, on the left, time as the independent variable:
> barplot(feed,xlab="Week",ylab="grams gained",

+ main = "Weight Gain by Week\n", legend.text=c("A","B"),

+ args.legend=list(title="Feed",x="topleft",bty="n"))

and, on the right, the feeds:
> barplot(t(feed),xlab="Feed",ylab="grams gained",

main = "Weight Gain by Feed\n",legend.text=c("1","2","3"),

args.legend=list(title="Week",x="topleft",bty="n"))

We can display the same data in a more expanded form using the beside =

TRUE option as in the following code:
> barplot(feed, beside=T,xlab="Week",ylab="grams gained",

main = "Weight Gain by Week\n", legend.text=c("A","B"),

args.legend=list(title="Feed",x="topleft",bty="n"))

and
> barplot(t(feed), beside=T,xlab="Feed",ylab="grams gained",

main = "Weight Gain by Feed\n",

legend.text=c("1","2","3"),

args.legend=list(title="Week",x="topleft",bty="n"))

In main for both of these plots, \n is the newline command, introducing an extra
line spacing after the main title. There are many options to the barplot command,
some of which we have used above. See the help page for more details.

3.3.2 Histograms

Histograms are commonly used to display the distribution of repeated measurements.
R does this with the hist function. If the fraction of measurements falling into each
range is desired instead, use plot(density), where the density function gives
useful numerical data about the distribution. As an example, we generate 1000 nor-
mally distributed random numbers with mean 10 and standard deviation 2. Results
are shown in Figure 3.8.
> set.seed(333)

> x = rnorm(1000,10,2)

> hist(x)

> plot(density(x))

> density(x) # Get information about distribution

Call:

density.default(x = x)

OTHER COMMON PLOTS 43

Histogram of x

x

Fr
eq
ue
nc
y

4 6 8 10 14

0
50

10
0

15
0

20
0

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

density.default(x = x)

N = 1000 Bandwidth = 0.4387
D
en
si
ty

Figure 3.8: Distribution of 1000 normally distributed random variables with mean = 10 and
standard deviation = 2. Left: Histogram; Right: Density plot.

Data: x (1000 obs.); Bandwidth ’bw’ = 0.4387

x y

Min. : 2.333 Min. :1.035e-05

1st Qu.: 6.277 1st Qu.:3.456e-03

Median :10.220 Median :2.737e-02

Mean :10.220 Mean :6.333e-02

3rd Qu.:14.164 3rd Qu.:1.183e-01

Max. :18.108 Max. :2.078e-01

The hist function tends to have a mind of its own when setting breaks between
classes. To control this, use the argument breaks = vecbreaks, where vecbreaks
is a vector that explicitly gives the breakpoints between histogram cells.

3.3.3 Box-and-whisker plots

The boxplot function gives a very informative graphical representation of a dis-
tribution of x in this case (Figure 3.8). The box shows the values of the first and
third quartiles, the heavy line in the middle of the box gives the median, and the
whiskers give the values of the quartile plus approximately 1.5 times the length of
the interquartile range. Values beyond the whiskers are given by points. The plot was
generated simply by
> boxplot(x, main = "Box Plot")

44 GRAPHING

4
6

8
10

12
14

16

Box Plot

Figure 3.9: Box plot of distribution of x from Figure 3.8.

3.4 Customizing plots

3.4.1 Points and lines

R has 26 point styles, numbered from 0 to 25, which can be specified by pch(n)

(Figure 3.10):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

pch

k

Figure 3.10: Point characters available in R.

It also has six line types, numbered from 1 to 6, which can be specified by lty(n)
(Figure 3.11):

6
5
4
3
2
1

Figure 3.11: Line types available in R.

As noted earlier, the size of points, relative to the default size, can be set by cex.
Similarly, the relative thickness of lines can be set by lwd.

3.4.2 Axes, ticks, and par()

R automatically chooses the scales of x and y axes, but sometimes you’d like a dif-
ferent choice. This is done with xlim and ylim, in which you explicitly set the upper
and lower limits for the axes. Points and lines can also be colored, using the parameter
col in plot or curve. The default, col=1, gives black. Integers 2–6 correspond to

CUSTOMIZING PLOTS 45

2 4 6 8

0.
2

0.
4

0.
6

0.
8

time

si
gn
al

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

si
gn
al

Figure 3.12: Left: Default plot of 0.8e−t/4 + 0.05; Right: Plot modified as described in the
text.

red, green, blue, cyan, and magenta, respectively. These colors can also be called by
name, e.g., col ="red".Typing ?palette gives much more information on graphic
color capabilities in R.

The axes, text placement, and other aspects of a graph can readily be customized
in R. For example, suppose we want a line plot of the function 0.8e−t/4 + 0.05 for t
values between 1 and 8.5. The result, produced by the code
> time = seq(1,8.5,.5)

> signal = 0.8*exp(-(time-1)/4) + 0.05

> plot(time, signal, type="l")

is shown in Figure 3.12, left.
We can modify this default result in several ways. For example, suppose we want

the ordinate to run from 0 to 10, and the abscissa from 0 to 1. We want the ticks to be
inside the axes rather than outside and to be a bit shorter. We want the plot margins
to be somewhat smaller, and the axis labels to be closer to the axes, to tighten up the
white space. We also want to add some lines to the graph, to emphasize that the signal
starts at time = 1 and that it levels off at signal = 0.05. These modifications are
accomplished by the following code, giving the result shown in Figure 3.12, right.

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> plot(time, signal, type="l",xlim = c(0,10), ylim = c(0,1))

> abline(h = 0.05, lty=3) # Horizontal line at y = 0.05

> abline(v=1,lty=3) # Vertical line at x = 1

The axis limits are specified with xlim = c(0,10) and ylim = c(0,1). The
tick direction and length are set with tcl = 0.3 (the default is -0.5, where the minus
sign specifies ticks outside the plot, and the number is the fraction of a line height).
The internal lines in the plot are drawn with the abline command.

Additional aspects of the plot are set with various arguments to the par function,
which specifies a broad range of graphical parameters. For example, figure margins
may be made tighter or looser with the mar argument to par, (the default is mar =

46 GRAPHING

c(5,4,4,2)+0.1), where the numbers are multiples of a line height and are in the
order bottom, left, top, right. mex determines coordinates in the margins of plots; val-
ues less than 1 move the labels toward the margins, thus decreasing white space. The
location of the axis labels is set by mgp (the default is mgp = c(3,1,0)). The new
settings of the par parameters are retained until modified by future par() statements,
or until a new R session is started. Type ?par for a listing of the many parameters
that go into a graph.

3.4.3 Overlaying plots with graphic elements

Once a plot has been formed, various elements may be added to it. We have al-
ready learned about points and lines, and will shortly learn how to add error bars
and text or mathematical annotations. In this subsection we demonstrate how to add
other basic graphic elements—line segments, rectangles, polygons, arcs, circles, and
ellipses—to a plot. The first three of these elements are called from base R, the last
four from the plotrix package. See Figure 3.13 for the results.
> par(mar=c(1.5,1.5,1.5,1.5)) # Reduce margins

> par(mfrow=c(1,2))

> plot.new(); plot.window(c(0,100), c(0,100), asp=1); box()

> x0=c(5,10,15); y0=x0; x1 = x0 + 5; y1 = y0 + 60

> segments(x0=x0,x1=x1,y0=y0,y1=y1, lty=1:3)

> rect(80,25,95,80,border="black",lwd=3)

> polygon(50+25*cos(2*pi*0:8/8), 50+25*sin(2*pi*0:8/8),

+ col=gray(0.8), border=NA)

>

> require(plotrix) # Assumes the package is already installed

>

> plot.new(); plot.window(c(0,100), c(0,100), asp=1); box()

Figure 3.13: Left: Graphic elements produced with base R; Right: Graphic elements produced
with plotrix package.

CUSTOMIZING PLOTS 47

> draw.arc(20, 20, (1:4)*5, deg2 = 1:20*15)

> draw.circle(20, 80, (1:4)*5)

> draw.ellipse(80, 20, a = 20, b = 10, angle = 30, col=gray(.5))

> draw.radial.line(start=2, end = 15, center = c(80,80), angle=0)

> draw.radial.line(start=2, end = 15, center = c(80,80), angle=pi/2)

> draw.radial.line(start=2, end = 15, center = c(80,80), angle=pi)

> draw.radial.line(start=2, end = 15, center = c(80,80), angle=3*pi/2)

>

> par(mfrow=c(1,1))

It is evident that these functions could be used to draw simple – or even not so
simple – diagrams.

Finally, we show how to color defined areas of a plot with the polygon() func-
tion. As an example, we distinguish the positive and negative regions of a function
with different shades of gray, which might be useful in a pedagogical presentation of
how to integrate the function.

Consider integrating the first order Bessel function besselJ(x,1) from x = 0
to its zero-crossing point near x = 10. We first compute the crossing points with the
uniroot function.
> x10 = uniroot(function(x) besselJ(x,1),c(9,11))$root

> x4 = uniroot(function(x) besselJ(x,1),c(3,5))$root

> x7 = uniroot(function(x) besselJ(x,1),c(6,8))$root

We compute the value of the function over the desired range, using many steps to
give a smooth polygon fill.
> x = seq(0,x10,len=100)

> y = besselJ(x,1)

Next we construct an empty plot with the desired x and y limits, and add the polygon
of the function with a medium gray fill.
> plot(c(0,x10),c(-0.5,0.8), type="n", xlab="x", ylab="J(x,1)")

> polygon(x,y,col="gray", border=NA)

We then “paint over” the negative region with white, and add a horizontal line at
x = 0.
> rect(0,-0.5,x10,0, col="white", border=NA)

> abline(h=0, col = "gray")

We calculate the value of the function in the negative region, again using many steps
for smoothness.
> xminus = seq(x4,x7,len=50)

> yminus = besselJ(xminus,1)

Finally, we cover the negative region with a polygon in a darker gray, and add back
the ticks that were painted over in an earlier step.
> polygon(xminus,yminus, col=gray(.2), border=NA)

> axis(1, tick=TRUE)

The result is seen in Figure 3.14.

48 GRAPHING

0 2 4 6 8 10

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

x

J(
x,
1)

0 2 4 6 8 10

Figure 3.14: The positive and negative regions of besselJ(x,1 distinguished with different
shades of gray using the polygon function.

3.5 Error bars

Plots of experimental data or simulations should generally have error bars on the
points to indicate uncertainty or statistical variation. Error bars are formed in R using
the arrows command, as in the following code.
> x = 0:20

> y = sin(x)^2 + cos(x/2)

> err.y = 0.1

> err.x = 1

> par(mfrow=c(1,2))

> # Plot just y error bars

> plot(x,y,type="o", pch=19)

> arrows(x,y,x,y+err.y,0.05,90); arrows(x,y,x,y-err.y,0.05,90)

> # Plot both x and y error bars

> plot(x,y,type="o", pch=19)

> arrows(x,y,x,y+err.y,0.05,90); arrows(x,y,x,y-err.y,0.05,90)

> arrows(x,y,x+err.x,y,0.05,90); arrows(x,y,x-err.x,y,0.05,90)

with the result shown in Figure 3.15. If each point has a different uncertainty, then
err.y should be a vector whose length is the same as that of y. arrows is called
with the arguments (x0,y0,x1,y1,length,angle) where (x0,y0) are the coor-
dinates of the starting point, (x1,y1) are the coordinates of the end point, length
is the length of the arrowhead in inches (default 0.25), and angle is the angle of the
arrowhead with the shaft. Type ?arrows for further information.

Error bars or confidence limits can also be plotted with the plotCI or
dispersion functions in the plotrix package. See their help pages for details.

SUPERIMPOSING VECTORS IN A PLOT 49

0 5 10 15 20

-1
.0

0.
0

1.
0

x

y

0 5 10 15 20

-1
.0

0.
0

1.
0

x

y

Figure 3.15: Illustration of error bars using the arrows command. Left: y error bars only;
Right: Both x and y error bars.

3.6 Superimposing vectors in a plot

An easy way to plot several data vectors in the same plot is to combine the vectors
into a matrix with cbind, and then use the matplot command. Of course, the vectors
must be of the same length and refer to the same x-value. As an example we use
the iris data frame in the base R installation. Type ?iris for information on this
dataset. (Help for matplot gives several other examples using iris.)

We will use Sepal.Length as the independent variable, and plot the other three
measured dimensions against it. To simplify the plot, we consider only data on the
setosa species. Thus we construct the vectors
> SL.s = iris$Sepal.Length[iris$Species == "setosa"]

> PL.s = iris$Petal.Length[iris$Species == "setosa"]

> SW.s = iris$Sepal.Width[iris$Species == "setosa"]

> PW.s = iris$Petal.Width[iris$Species == "setosa"]

> setosamat = cbind(SW.s,PL.s,PW.s)

The commands above retrieve four row vectors SL.s, PL.s, SW.s, and
PW.s, from the iris dataset distributed with the R package. The command
cbind(SW.s,PL.s,PW.s) combines the three vectors into the three-column ma-
trix setosamat, with each column containing the data in one of the vectors PL.s,
SW.s, and PW.s.

The matplot() command then plots the data in each of these column vectors
against the data in SL.s.
> matplot(SL.s, setosamat)

from which we see that, by default, R labels each point with the number of the vector,
and uses the standard “rainbow” colors for further identification. Since this book is
in black and white, the colors don’t show on the page, but they will on a computer
screen (Figure 3.16, left).

The plot can be improved by changing the points to standard symbols and adding
better axis labels and a legend (Figure 3.16, right).

50 GRAPHING

1

1
11

1
1

1 1

1
1

1
1

11

1

1

1

1
11

1
11
11

1

1 11
1 1

1

1 1

1 1
11

1

11

1

1
1
1

1

1

1

1

1

4.5 5.0 5.5

0
1

2
3

4

SL.s

cb
in

d(
S

W
.s

, P
L.

s,
 P

W
.s

)

222
2 2

2
2 22 2 22

2
2 2

2
22

2
2

2
2

2

2
2

22 22
2 2 22 22

2 222
2

222
2
2

2
2

2 22

3333 3
33 33 3 3333 3

333 33 3
3

3
3

3 3
3

333 3
3

3 33 3 333 3333

3
33 33 33

4.5 5.0 5.5

0
1

2
3

4

Sepal Length
Iri

s
M

ea
su

re
s

PL.s
SW.s
PW.s

Figure 3.16: Matplots of iris data.

> matplot(SL.s, setosamat col=c(1,1,1), pch = 15:17,

+ xlab="Sepal Length", ylab = "Iris Measures")

> legend("topleft", legend=c("PL.s","SW.s","PW.s"),

+ pch=15:17, bty="n")

As another example, we define three displaced sine functions, then bind the three
y vectors into a matrix m, and matplot the result, specifying different line types
(or we could have used points) and a single line color (1 = black), since by default
matplot colors the variables successively with col = c(1,2,3,...). To show
how the plot parameters work, we modify the y-label, and add main title and subtitle.
Once the plot is drawn, we add a legend.
> x=seq(-4*pi,4*pi,pi/6)

> y1=sin(x)

> y2=sin(x+pi/6)+0.1

> y3=sin(x+pi/3)+0.2

> m = cbind(y1,y2,y3)

> matplot(x,m,type="l",ylab="y1,y2,y3",lty=1:3,col="black",

+ main = "Displaced sin functions",

+ sub = "y1 = sin(x), y2 = sin(x+pi/6)+0.1, y3 = sin(x+pi/3)+0.2")

> legend("bottomleft",legend=c("y1","y2","y3"),col=1,lty=1:3,bty="n")

The result is shown in Figure 3.17. The x axis was expanded before plotting to allow
more room for the legend.

3.7 Modifying axes

Scientific and engineering graphs often need axes other than the default linear axes
with ticks on the bottom and left. R has many options for customizing axes, of which
we present here a few of the most commonly used.

MODIFYING AXES 51

-10 -5 0 5 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

Displaced sin functions

y1 = sin(x), y2 = sin(x+pi/6)+0.1, y3 = sin(x+pi/3)+0.2
x

y1
,y
2,
y3

y1
y2
y3

Figure 3.17: Superimposed vectors using matplot.

3.7.1 Logarithmic axes

The following code produces a log-log plot of the function y = 1 + x2.3 where x runs
from 0.2 to 10 (Figure 3.18).
> x = seq(.2,10,by=.2)

> y = 1 + x^2.3

> plot(x,y,log="xy", type="l")

If the plot call were plot(x,y,log="x") then only the x axis would be logarithmic;
similarly for y.

3.7.2 Supplementary axes

Sometimes one wants the top and right axes to provide different scales than the bot-
tom and left axes. The axes are numbered 1 (bottom), 2 (left), 3 (top), and 4 (right) .
In the following code, we put temperature in celsius on the bottom and in fahrenheit
on the top, and energy in kilojoules on the left and kilocalories on the right. The par
commands online 3 set margins for the plot (Figure 3.19).

0.2 0.5 1.0 2.0 5.0 10.0

1
2

5
10

20
50

10
0

20
0

x

y

Figure 3.18: Plotting with logarithmic axes.

52 GRAPHING

0 20 40 60 80 100

16
00

20
00

24
00

28
00

T, deg C

dH
/k
J

32 68 104 140 176 212

T, deg F

32 68 104 140 176 212

41
9

46
7

51
4

56
2

61
0

65
8

dH
/k
C
al

Figure 3.19: Adding supplementary axes to a graph.

> tC = seq(0,100,10)

> dH = 2000 + 10*(tC - 25)

> par(tcl=0.3, mar=c(3,3,4,4)+0.1, mgp = c(2,0.4,0))

> plot(tC, dH, xlim = c(0,100), ylim = c(1600,2800),

+ xlab="T, deg C",ylab="dH/kJ", tcl=0.3)

> axis(3, at = tC, labels = tC*9/5+32, tcl=0.3)

> mtext(side=3,"T, deg F", line = 2)

> axis(3, at = tC, labels = tC*9/5+32, tcl=0.3)

> axis(4, at = dH, labels = round(dH/4.18,0), tcl=0.3)

> mtext(side=4,"dH/kCal", line = 2)

3.7.3 Incomplete axis boxes

One may wish to draw some graphs without all four axes. This is controlled by the
bty (box type) parameter. For example, to draw the graph in Figure 3.20, use the
command
> curve(log10(x), 0.5,5, bty = "L")

since the axes form an L. Likewise, to draw axes 1,2,4 but omit axis 3, use bty =

"U"; and to draw axes 1,2,3 but omit axis 4, use bty = C. To omit all axes, use bty
= "n" (none). Note that this latter command also prevents the drawing of a box
around a legend. (See Figure 3.17 and accompanying code.)

3.7.4 Broken axes

Sometimes a dataset will have groups of points with widely different values. If log-
arithmic axes are not appropriate, one will wish to break the linear axes between
the two groups of values, since otherwise the smaller values will be unduly com-
pressed. This may be done with the axis.break function in the plotrix pack-
age, along with reducing the larger values, suppressing the automatic numbering of

MODIFYING AXES 53

1 2 3 4 5

-0
.2

0.
0

0.
2

0.
4

0.
6

x

lo
g1
0(
x)

Figure 3.20: Drawing a graph with only two axes.

the axes with axes=FALSE, and imposing customized labels with the axis() com-
mand. The following code gives an example. Note also that, for illustrative purposes,
we have given the x and y axes the two different break styles, zigzag and slash

(Figure 3.21).

> xstep = 0.1 # Scale factor for x axis

> x1 = seq(0.1,0.5,xstep)

> x2 = seq(5.0,5.3,xstep)

> x2red = x2-min(x2)+max(x1)+2*xstep

> x = c(x1,x2red)

> ystep = 1 # Scale factor for y axis

> y1 = 1:5

> y2 = c(51,53,52,54)

> y2red = y2-min(y2)+max(y1)+2*ystep

> y = c(y1,y2red)

>

> library(plotrix)

>

> plot(x,y,axes=F,xlab="x", ylab="y")

> box() # Draw axes without labels

> axis.break(1,max(x1)+xstep, style="zigzag", brw=0.04)

> axis.break(2,max(y1)+ystep, style="slash", brw=0.04)

>

> lx1 = length(x1); lx2 = length(x2)

> lx = lx1 + lx2

> ly1 = length(y1); ly2 = length(y2)

> ly = ly1 + ly2

>

> axis(1,at=(1:lx1)*xstep,labels=c(as.character(x1)))

> axis(1,at=((lx1+2):(lx+1))*xstep,labels=c(as.character(seq(min(x2),

+ max(x2),by=xstep))))

> axis(2,at=(1:ly1)*ystep,labels=c(as.character(y1)))

> axis(2,at=((ly1+2):(ly+1))*ystep,labels=c(as.character(seq(min(y2),

+ max(y2),by=ystep))))

54 GRAPHING

x

y
0.1 0.2 0.3 0.4 0.5 5 5.1 5.2 5.3

1
2

3
4

5
51

52
53

54

Figure 3.21: Example of axis.break() in plotrix to plot data of substantially different
magnitudes.

3.8 Adding text and math expressions

To annotate certain points on a graph, one can use the arrows and/or text functions.
> x = -10:10

> y = sin(x)

> plot(x,y, type="o")

> text(3,1, "Local Max")

> text(-2.5,-1,"Local Min")

> arrows(1,-.1,.1,0,length=0.1,angle=15)

> text(1,-.15,"0,0")

In the arrows function, length specifies the length of the arrowhead in inches,
and angle specifies the angle (degrees) that the arrowhead makes with the shaft
(Figure 3.22).

-10 -5 0 5 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Local Max

Local Min

0,0

Figure 3.22: Annotating a graph with text and arrow.

ADDING TEXT AND MATH EXPRESSIONS 55

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

Convergence to Riemann ζ

v

∑ 1n
1
vk

ζ2 =
π2

2

ζ4 =
π4

90

k = 2

k = 4

Figure 3.23: Use of expression() to annotate a graph.

3.8.1 Making math annotations with expression()

R has the facility to annotate plots with mathematical as well as textual material,
using commands similar to those in TEX. Type demo(plotmath) or ?plotmath for
a complete list. Here we give an example, using the convergence of sums to the
Riemann zeta functions of orders 2 and 4, of how to use expression() to produce
useful annotations of a plot (Figure 3.23). The function mtext enables placing text
outside the boundaries of the plot. side=4 specifies the right-hand vertical axis, at
gives the vertical placement of the text, line specifies the line (counting from 0)
parallel to the axis on which the test is to be placed, and las = 2 indicates that the
text is to be written perpendicular to the axis (the default las = 1 gives parallel
orientation).

> n = 20

> v = 1:n

> v2 = v^(-2)

> s2 = cumsum(v2)

> v4 = v^(-4)

> s4 = cumsum(v4)

> s = cbind(s2,s4)

> # par(mar=c(5,5,4,4)+0.1)

> par(mar=c(4,5,4,5)+0.1,mex=.8,mgp=c(2,.5,0),tcl=0.3)

> matplot(v,s, type="p", pch=c(16,17), col=1,ylim=c(1,1.7), bty="L",

+ xlab="v", ylab = expression(sum(1/v^k,v=1,n)),

+ main = expression(paste("Convergence to Riemann ",zeta)))

> abline(h=pi^2/6,lty=2)

> abline(h=pi^4/90,lty=2)

> mtext(side=4,at=pi^2/6,text=expression(zeta[2] ==

+ frac(pi^2,2)),line=1,las=2)

> mtext(side=4,at=pi^4/90,text=expression(zeta[4]==frac(pi^4,90)),

+ line=1,las=2)

56 GRAPHING

> text(5,1.52,"k = 2")

> text(5,1.12,"k = 4")

3.9 Placing several plots in a figure

Sometimes one needs to produce a figure that combines several plots. One may do
so using the command par(mfrow=c(n1,n2)) to place the plots in n1 rows and
n2 columns, with mfrow specifying that they are placed in row order. If column
order is desired, use mfcol. We have done this already many times in this chapter,
to put two plots side-by-side with par(mfrow=c(1,2)). Expanding this idea, here
is sample code, showing four ways of plotting 1000 normally distributed random
numbers, leading to Figure 3.24. The statement par(mfrow = c(1,1)) at the end
reestablishes the default of a single plot in a figure.

> n = 1000

> x = 1:n

> set.seed(333)

> y1 = rnorm(n,0,1)

> y2 = rnorm(n,0,2)

> par(mfrow = c(2,2))

> plot(y1)

> boxplot(y1,y2)

> hist(y1)

> plot(density(y2))

> par(mfrow = c(1,1))

0 200 400 600 800 1000

-3
-2

-1
0

1
2

3

Index

y1

1 2

-6
-4

-2
0

2
4

6

Histogram of y1

y1

Fr
eq
ue
nc
y

-3 -2 -1 0 1 2 3

0
50

10
0

15
0

20
0

-5 0 5

0.
00

0.
10

0.
20

density.default(x = y2)

N = 1000 Bandwidth = 0.4426

D
en
si
ty

Figure 3.24: Placing several plots in a figure.

PLACING SEVERAL PLOTS IN A FIGURE 57

6 8 10 12 14

0
2

4
6

8
10

y vs x

x

y

6
8

10
12

14

x distribution
0

2
4

6
8
10

y distribution

Figure 3.25: Using layout to create a scatter plot with accompanying box plots.

For more complex layouts, in which the plots are of different sizes, use
layout(). As a simple example, we construct a figure in which the first plot uses all
of the top row, while the second and third plots share the bottom row.

> # Divide the device into two rows and two columns

> # Allocate figure 1 all of row 1

> m = matrix(c(1,1,2,3),ncol=2,byrow=TRUE)

> layout(m)

> x = rnorm(100,10,2)

> y = rnorm(100,5,2)

> par(mar=c(2,3,3,2))

> plot(x,y,main="y vs x")

> boxplot(x,main="x distribution")

> boxplot(y,main="y distribution")

which gives Figure 3.25.

58 GRAPHING

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.26: Left: Image plot; Right: Contour plot.

To see a more complex illustration, run the code to create a scatter plot with
marginal histograms in the example file for help(layout).

3.10 Two- and three-dimensional plots

R can produce two-and three-dimensional plots of multidimensional data. For two-
dimensional projections, use image or contour. These functions generally use
colors (see help for sample palettes), but in this book we use shades of gray
(Figure 3.26).

> n = 1:20

> x = sin(n)

> y = cos(n)*exp(-n/3)

> z = outer(x,y)

> par(mar=c(3,3,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> par(mfrow=c(1,2)) # Two plots side-by-side

> image(z,col=gray(1:10/10)) # First plot

> contour(z) # Second plot

> par(mfrow=c(1,1)) # Reset to default single plot

A variant of contour is filled.contour, which produces a contour plot with
the areas between the contours filled in solid color. A key showing how the colors
map to z values is shown to the right of the plot. See ?filled.contour for details
and examples.

A three-dimensional perspective projection is achieved with the persp() func-
tion (Figure 3.27). Viewing angles are adjusted with theta and phi. The figure
facets can be shaded with the shade parameter. With the same x,y,z values as in the
previous example, we write
> par(mar=c(1,1,1,1))

> par(mfrow=c(1,2))

TWO- AND THREE-DIMENSIONAL PLOTS 59

n n

z

n n
z

Figure 3.27: Left: Perspective plot of the outer product of sin(n) and cos(n)e−n/3; Right: The
same plot with shade applied.

> persp(n,n,z, theta=45,phi=20)

> persp(n,n,z, theta=45,phi=20, shade=0.5)

> par(mfrow=c(1,1))

to get Figure 3.27.
The rglpackage has numerous functions for plotting 3D graphics, including

persp3d() which is similar to persp(), but does a better job of handling hidden
surface removal and produces rotatable plots.

The package scatterplot3d enables plotting of multivariate data in three di-
mensions. This package is not included in the base R installation, so it must be in-
stalled and then loaded with library() or require().
> install.packages("scatterplot3d")

> library(scatterplot3d) # Or require(scatterplot3d)

Simple examples of its use, with two plot types (Figure 3.28), are obtained from
the code below.
> x=1:20

> y=1:20

> set.seed(17)

> z = runif(20)

> par(mfrow=c(1,2))

> par(mar=c(1,1,1,1))

> scatterplot3d(x,y,z)

> scatterplot3d(x,y,z, type="h")

60 GRAPHING

 0 5 10 15 200.
0
0.
2
0.
4
0.
6
0.
8
1.
0

 0
 5
10
15
20

x
y

z

 0 5 10 15 200.
0
0.
2
0.
4
0.
6
0.
8
1.
0

 0
 5
10
15
20

x

y

z
Figure 3.28: scatterplot3d plots (left) default (type = ‘‘p’’); Right: (type =‘‘h’’).

The help page for scatterplot3d() lays out the many optional arguments to
the function and shows some interesting examples of its use to draw 3D geometrical
figures as well as data points.

3.11 The plotrix package

The add-on plotrix package contains a number of plotting functions that may be
of interest to scientists and engineers. We survey some of them in this section. Of
course, the package must be installed and loaded with
install.packages("plotrix")

require(plotrix)

before its functions can be used.

3.11.1 radial.plot and polar.plot

Data are sometimes more conveniently displayed in a polar coordinate system than
a Cartesian one. plotrix has radial.plot and polar.plot functions to enable
such displays (Figure 3.29). The two functions are nearly identical, except for the val-
ues of the angular variables (radians and degrees) and the names of those variables
(radial.pos and polar.pos, respectively). The following code shows three exam-
ples of the use of these functions, using the three types of plots available: polygon
(convenient for function plotting), symbol, and radial line.
> require(plotrix)

> par(mfrow=c(1,3)) # 3 plots in a row

> par(cex.lab=0.7) # reduce the size of interior labels

>

> angle = seq(0, 2*pi, len = 50)

> radius = 10*cos(angle)^2 + cos(angle + pi/6)

> radial.plot(lengths = radius, radial.pos = angle,

THE PLOTRIX PACKAGE 61

radial.plot, type = p
0

0.71

1.41

2.12

2.83 3.53

4.24

4.95

5.65

0 2 4 6 8 1012

polar.plot, type = s
020

40
60

80

100

120
140

160 180 200
220

240

260

280

300
320

340

0
2
4
6
8
10
12

polar.plot, type = r
020

40
60

80

100

120
140

160 180 200
220

240

260

280

300
320

340

0
2
4
6
8
10
12

Figure 3.29: Radial (left) and polar (center, right) plots using (p)polygon, (s)ymbol, and
(r)adial line representations.

+ start=pi/2, rp.type = "p",

+ main = "radial.plot, type = p")

>

> angle = c(0,5,32,111,273,314)

> distance = c(0,7,12,10, 5, 8.3)

> polar.plot(lengths = distance, polar.pos = angle,

+ start=90, rp.type = "s", point.symbols=16,

+ show.grid.labels=1,

+ main = "polar.plot, type = s")

>

> angle = c(0,5,32,111,273,314)

> distance = c(0,7,12,10, 5, 8.3)

> polar.plot(lengths = distance, polar.pos = angle,

+ start=90, rp.type = "r", lwd=2,

+ show.grid.labels=1,

+ main = "polar.plot, type = r")

Parameters such as grids, labels, and angular start position can be adjusted in the
function calls, as detailed in the help pages. The help page for radial.plot is more
comprehensive than that for polar.plot.

3.11.2 Triangle plot

In disciplines that study mixtures, such as soil science or thermodynamics of alloys,
triangle plots that characterize ternary mixtures are useful. The plotrix package
has the triax.plot function for constructing such plots. The help page shows how
plot details like grids, labels, and symbols can be adjusted. Here is an example for a
set of four three-component alloys (Figure 3.30).
> require(plotrix)

>

> alloy1 = c(20, 75, 5)

62 GRAPHING

Alloy Composition

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 0.

1
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

alloy1
alloy2
alloy3
alloy4

Figure 3.30: Triangle plot of alloy composition.

> alloy2 = c(25, 65, 10)

> alloy3 = c(32,50, 18)

> alloy4 = c(12,70, 18)

> alloys = rbind(alloy1, alloy2, alloy3, alloy4)

>

> triax.return = triax.plot(alloys, main = "Alloy Composition",

+ show.grid = TRUE, show.legend = TRUE,

+ col.symbols = gray(2:5/10), pch = 16:19, bty="n")

>

> par(triax.return$old.par) # Change parameters back

The functions triax.points and triax.abline enable placing points and
drawing straight lines in a triangle plot. triax.frame draws the triangle outline,
axis labels, and title without data. triad.fill fills a triangle plot with smaller tri-
angles. See the help pages of these functions for details and examples.

3.11.3 Error bars in plotrix

As mentioned earlier (Section 3.5), plotrix contains the function plotCI which,
given a set of x and y values and upper and lower bounds, plots the points with error
bars. Depending on the situation, this function may enable greater control of the plot
details with less coding than using the arrows function approach.

Likewise, the function dispersion in plotrix will display either vertical lines
with horizontal caps (i.e., error bars) or lines (filled if desired) that form a “confidence
band” around the line connecting the data points. See the help pages for details.

ANIMATION 63

-20 -10 0 10 20

-2
0

-1
0

0
10

20

x

y

Figure 3.31: Result of Brownian motion animation after 100 steps with 10 particles.

3.12 Animation

Animation is often useful in scientific or engineering calculations, to visualize the
time course of complex events. The animation package in R presents “A Gallery
of Animations in Statistics and Utilities to Create Animations.” The results can be
shown either in an R graphics window or in an HTML browser window. Here we
present an adaptation of the brownian.motion demo, with a figure (Figure 3.31)
showing the final state of 10 particles making 100 random steps in two dimensions.
Of course, a static book page cannot represent an animated graphics window, so the
reader should run the code.

> install.packages("animation")

> require(animation)

> brownian.motion = function(n = 10, xlim = c(-20, 20),

+ ylim = c(-20, 20), ...) {

+ x = rnorm(n)

+ y = rnorm(n)

+ interval = ani.options("interval")

+ for (i in seq_len(ani.options("nmax"))) {

+ plot(x, y, xlim = xlim, ylim = ylim, ...)

+ # text(x, y)

+ x = x + rnorm(n)

+ y = y + rnorm(n)

+ Sys.sleep(interval)

+ }

+ invisible(NULL)

+ }

> # Change options from default (interval = 1, nmax = 50)

> oopt = ani.options(interval = 0.05, nmax = 100)

> brownian.motion(pch = 16, cex = 1.5)

> ani.options(oopt) # Restore default options

64 GRAPHING

3.13 Additional plotting packages

A great deal of effort has been put by developers into devising useful functions for
graphing almost any kind of data or functions. We have already mentioned plotrix,
scatterplot3d, rgl, and animation. The graphics task view (http://cran.r-
project.org/web/views/ Graphics.html) summarizes the many other packages avail-
able. In particular, the lattice package (included in the R installation) and the
ggplot2 package provide important facilities for producing more complex graphics
than we have considered here.

Chapter 4

Programming and functions

R is a full-fledged programming language, with standard programming constructs
like conditional execution, loops, and subroutines (called functions in R). In this
chapter we show how these constructs are implemented.

4.1 Conditional execution: if and ifelse

Computer programs can choose different computations depending on whether a log-
ical condition evaluates to true or false. The relational operators in R that perform
such evaluation are listed in Section 2.5. The logical operators are & (and), | (or),
and ! (not).

The if statement operates on logical vectors of length 1. A formal construction
is
if(condition 1) {

result 1

} else if (condition 2) {

result 2

} else {

result 3

}

For example
> x = -3

> if(x < -1) {

+ y = -1

+ } else if (x < 0) {

+ y = 0

+ } else {

+ y = 1

+ }

> y

[1] -1

Be careful not to insert a line feed between } and else, because R will interpret
everything up to the } as a complete command and will return a result prematurely.
This is a general rule: If you are forced to break a line because it is too long, be

65

66 PROGRAMMING AND FUNCTIONS

sure to break it so as to yield an incomplete command. R will then insert a + at the
beginning of the next line.

In simple cases, the if-else construction can be written on a single line:
> x = -1

> if (x > 0) 1 else 0

[1] 0

Likewise for more than two choices, with else if:
> x = 0

> if (x < 0) 0 else if (x == 0) 0.5 else 1

[1] 0.5

A conditional construction may be used inside another construction, e.g.,
> x = if(y > 0) pi else pi/2

To apply conditional execution to each element of a vector, use the function
ifelse:
> set.seed(333)

> x = round(rnorm(10),2)

> y = ifelse(x>0, 1, -1)

> x

[1] -0.08 1.93 -2.05 0.28 -1.53 -0.27 1.23 0.63 0.35 -0.56

> y

[1] -1 1 -1 1 -1 -1 1 1 1 -1

R also has a switch function, switch(EXPR, cases), which evaluates EXPR and
accordingly chooses one of the cases.
> set.seed(123)

> x = rnorm(10, 2, 0.5)

> y = 3

> switch(y, mean(x), median(x), sd(x))

[1] 0.476892

4.2 Loops

Computations often must repeat certain steps either a given number of times, or until
some condition is met. R, like other programming languages, has the looping func-
tions to deal with such situations, though it is often possible, and usually desirable,
to avoid loops by taking advantage of vectorization.

4.2.1 for loop

To repeat an operation through a given range of elements of a vector, use the for

construction.
> sum = 0

> for (i in 1:10) sum = sum + i

LOOPS 67

> sum

[1] 55

An alternative that uses vectorization rather than a loop:
> sum(1:10)

[1] 55

For a slightly more complicated example, sum over only even numbers:
> sum = 0

> for (i in 1:10) if (i%%2 == 0) sum = sum + i

> sum

[1] 30

The alternative that takes advantage of vectorization, though it is hardly necessary
for such a short vector:
> sum(c(2,4,6,8,10))

[1] 30

If the number of repetitions of the loop operation gets very large, for loops
become notably slower than vectorized operations. Consider calculation of a million
sine functions:
> n = 1000000

> x=0

> system.time(for (i in 1:n) x = sin(i/n))

user system elapsed

0.739 0.005 0.742

>

> i = 1:n # vectorized

> system.time(sin(i/n))

user system elapsed

0.057 0.004 0.061

However, if the value of an element of the vector is changed according to the
values of other elements, then vectorization is not possible. A common example is
numerical integration of a differential equation using Euler’s method. Consider ra-
dioactive decay, in which the rate of decrease in the number of radioactive atoms N
is proportional to the number remaining (Figure 4.1):

dN
dt

=−kN (4.1)

with initial number N0 at t = 0.

Set up initial conditions and define variables

> tmin = 0; tmax = 100; dt = 1

> n = (tmax - tmin)/dt + 1 # 101 time values from 0 to 100

> time = seq(tmin, tmax, by = dt)

> k = .03 # Decay rate constant

> N0 = 100 # Initial number of atoms

> N = N0 # Initialize N

68 PROGRAMMING AND FUNCTIONS

0 20 40 60 80 100

20
40

60
80

10
0

time

N

Figure 4.1: Simulation of radioactive decay using Euler’s method.

Run for loop

> for (i in 2:n) {

+ dN = -k*N[i-1]*dt

+ N[i] = N[i-1] + dN}

Plot results

> plot(time, N, type = "l")

Since Ni depends on Ni−1, vectorization is not possible and a for loop is required.

4.2.2 Looping with while and repeat

Sometimes the number of repetitions in a loop is not known beforehand, but the loop
is to be terminated when some condition is met. Then a while or repeat loop is
called for.

Consider, for example, simulation of a particle undergoing a biased random walk
in one dimension, starting at the origin and taking steps of mean length 0.5 and
standard deviation 1. We use a while loop to report how many steps it takes to get
to position greater than 10, and what that position is.
> x=0

> n=0

> set.seed(333)

> while (x <= 10) {

+ n=n+1

+ x=x+rnorm(1,mean=.5,sd=1)

+ }

>

> print(paste ("n = ", n, ", x = ",round(x,2)))

[1] "n = 26 , x = 11.05"

A similar result can be achieved with a repeat loop, with break terminating the
loop if the condition is met. Without break, one would have an infinite loop. As an

USER-DEFINED FUNCTIONS 69

added feature, next stops the current iteration if the result is unacceptable (too large
a negative step in this case) and proceeds to the next iteration.
> x=0

> n=0

> set.seed(333)

> repeat {

+ n=n+1

+ dx=rnorm(1,mean=0.5,sd=1)

+ if (dx < -1) next # Reject large negative steps

+ x=x+dx

+ if (x > 10) break

+ }

> print(paste ("n = ", n, ", x = ",round(x,2)))

[1] "n = 19 , x = 10.55"

4.3 User-defined functions

R allows user-defined functions, which might be called subroutines in some other
programming languages. The general form of a function definition is
f = function(x,y,...) expression involving x, y, ...

The result of the function will be the last evaluated expression, unless return() is
called (see sqrt N below). In this section we give a few simple examples of user-
defined functions; more will be used throughout the book.

Here’s a simple function that calculates the first three powers of a vector and
arranges the result as a matrix.

> powers = function(x) {matrix(c(x,x^2,x^3),nrow=length(x),ncol=3)}

> v = 1:5

> powers(v)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 4 8

[3,] 3 9 27

[4,] 4 16 64

[5,] 5 25 125

Here’s a function of two variables for doing modular division.
> modcalc = function(x,y) c(x%/%y, x%%y)

> modcalc(17,3)

[1] 5 2

Functions may have options, which may in turn have default values. The Newton
method for finding square roots includes a loop and a conditional in the function, and
we have defined default values for the tolerance (relative change per iteration) and
maximum number of iterations.
> sqrt_N = function(a, tol=2.22e-16, max.iter=50) {

70 PROGRAMMING AND FUNCTIONS

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(x
)

Figure 4.2: Overlay of gaussian(x,0,1) (solid line), dnorm (points), and
lorentzian(x,0,1) (dotted line) functions.

+ x=a

+ iter = 0

+ xdiff = Inf

+ while (xdiff > tol) {

+ iter = iter + 1

+ xold = x

+ x = (x + a/x)/2

+ xdiff = abs(x-xold)/abs(x)

+ if (iter > max.iter) {print(paste("Not converged after",

+ iter,"cycles."))

+ break

+ }}

+ return(print(paste("sqrt(",a,")=",x,", xdiff=", xdiff,",

+ iterations=",iter))) }

> sqrt_N(52.3)

[1] "sqrt(52.3)= 7.23187389270582 , xdiff= 0 , iterations= 9"

The Gaussian and Lorentzian functions are frequently encountered in spec-
troscopy and other scientific areas. gauss(x,0,1) is equivalent to dnorm, the prob-
ability density function for the normal distribution built into R (Figure 4.2).

> gauss = function(x,x0,sig) {1/sqrt(2*pi)*sig*exp(-(x-x0)^2/(2*sig^2))}

> lorentz = function(x,x0,w) {w/pi/((x-x0)^2 + w^2)}

>

> curve(gauss(x,0,1), -5,5, ylab = "f(x)", main = "Distributions")

> curve(dnorm,-5,5,type="p", add=T)

> curve(lorentz(x,0,1), xlim = c(-5,5), lt = 2, add=T)

We shall construct and use many functions throughout this book. Consider, for
example, this variation on the one-dimensional random walk theme. Define the func-
tion randwalk(N), in which we start at 0 and generate N steps of unit length
taken randomly to either the left or the right. We pick the direction of each step

USER-DEFINED FUNCTIONS 71

Histogram of multiwalks

multiwalks

Fr
eq
ue
nc
y

-20 -10 0 10 20

0
5

10
15

20
25

Figure 4.3: Histogram of displacements of 100 one-dimensional random walks.

by generating a uniformly distributed random number x between 0 and 1, moving in
the negative direction if x≤ 0.5 and in the positive direction if x > 0.5. The function
returns the displacement of the walk from its starting point.
> randwalk = function(N) {

+ walk = rep(0,N+1) # Initialize the vector of steps

+ for (i in 2:(N+1)) {

+ x = runif(1)

+ if (x <= 0.5) walk[i]=walk[i-1]-1 else walk[i]=walk[i-1]+1

+ }

+ return(walk[N]) # End point

+ }

We then repeat the random walk many times (100 in the example below), gen-
erating one component of the displacement vector multiwalks for each repetition,
and compute the mean and standard deviation of the displacement for this ensemble
of random walks. Since steps to left and right are equally probable, the mean should
be zero, while the standard deviation should be

√
N, or 10 in this case. We also plot

the histogram of the displacements (Figure 4.3).
> multiwalks = c()

> for (k in 1:100) { # 100 walks

+ multiwalks[k] = randwalk(100) # endpoint of k-th walk

+ }

> mean(multiwalks) # Should be near 0

[1] -0.08

> sd(multiwalks) # Should be near 10

[1] 9.92261

> hist(multiwalks)

The mean and standard deviation accord well with expectations.

72 PROGRAMMING AND FUNCTIONS

A faster and more elegant way to generate the steps of a random walk is with the
sample() function:
sample(x, size, replace = FALSE, prob = NULL)

which takes a sample of the specified size from the elements of the vector x using
the probabilities given in prob. The default is sampling without replacement, but in
this case we want sampling with replacement. In our example, x has the elements 1
and -1, each with probability 0.5, and we want a sample of size N.

> randwalk2 = function(N) {

+ sum(sample(c(1,-1),size=N, replace=TRUE, prob=c(0.5,0.5)))

+ }

Then proceed as before:
> multiwalks2 = c()

> for (k in 1:100) {

+ multiwalks2[k] = randwalk2(100)

+ }

> mean(multiwalks2)

[1] -0.78

> sd(multiwalks2)

[1] 9.727167

4.4 Debugging

Things can often go wrong when writing functions or other code. Indeed, it may
frequently be the case that more time will be spent on debugging than on writing the
original code. Therefore, methods for tracking and correcting errors are important.
Perhaps the simplest method is to insert print() or cat statements at intermediate
points in the program. For example, here is code for a function that takes a vector
of numbers x, squares each element, subtracts 4, and takes the natural logarithm of
the result. Of course, if the x value is too small, the final operation will be taking the
log of zero or a negative number, which gives NaN. We put a print statement in the
function to see whether such numbers appear before logs are taken.

> f1 = function(x) {

+ xsq = x^2

+ xsqminus4 = xsq - 4; print(xsqminus4)

+ log(xsqminus4-4)

+ }

> f1(6:1)

[1] 32 21 12 5 0 -3

[1] 3.332205 2.833213 2.079442 0.000000 NaN NaN

Warning message:

In log(xsqminus4 - 4) : NaNs produced

Alternatively, we can omit the print statement in the function, and use the
debug function to step through the program one instruction at a time, invoking print

BUILT-IN MATHEMATICAL FUNCTIONS 73

from the Browser prompt to see intermediate results where we suspect a problem
may arise.

> debug(f1)

> f1(1:6)

debugging in: f1(1:6)

debug at #1: {

xsq = x^2

xsqminus4 = xsq - 4

log(xsqminus4 - 4)

}

Browse[2]>

debug at #2: xsq = x^2

Browse[2]>

debug at #3: xsqminus4 = xsq - 4

Browse[2]>

debug at #4: log(xsqminus4 - 4)

Browse[2]> print(xsqminus4-4)

[1] -7 -4 1 8 17 28

Browse[2]>

exiting from: f1(1:6)

[1] NaN NaN 0.000000 2.079442 2.833213 3.332205

Warning message:

In log(xsqminus4 - 4) : NaNs produced

To end debugging, type undebug(f1). Type ?debug for more information.

4.5 Built-in mathematical functions

At the beginning of Chapter 2 we noted that many mathematical functions—in
addition to the standard logarithmic, trigonometric, and hyperbolic functions—are
built in to the base installation of R. In these functions, as in others we shall dis-
cuss later, some options are given default values. Other values might be chosen,
e.g., expon.scaled = TRUE. Details of implementation and examples of usage of
these operators and functions can be obtained by entering help(function.name)

or ?function.name at the R prompt. Here we give just a few examples of usage.

4.5.1 Bessel functions

• besselI(x, nu, expon.scaled = FALSE)

• besselK(x, nu, expon.scaled = FALSE)

• besselJ(x, nu), besselY(x, nu)

We can readily plot these functions to get a quick grasp of their behavior. For
example, In Figure 4.4 it is apparent that the zeros in J(x,1) coincide with the maxima
and minima of J(x,0), consistent with the relation J(x,0)′ = J(x,1).

74 PROGRAMMING AND FUNCTIONS

0 2 4 6 8 10

-0
.4

0.
0

0.
4

0.
8

x

J(
x,

0)
, J

(x
,1

)

J(x,0)
J(x,1)

Figure 4.4: Bessel functions J(x,0) and J(x,1).

> curve(besselJ(x,0),0,10, ylab = "J(x,0), J(x,1)",

+ main = "Bessel Functions")

> curve(besselJ(x,1),lty=2,add=T)

> abline(0,0)

> legend("topright", legend = c("J(x,0)", "J(x,1)"), lty = 1:2,

+ bty="n")

The Bessel package contains additional Bessel functions BesselI() and
BesselH() (Hankel function), computations for real and complex numbers, and
asymptotic approximations for large arguments.

4.5.2 Beta and gamma functions

• beta(a, b), lbeta(a, b) The beta function and its natural logarithm.
• gamma(x), lgamma(x) The gamma function and the natural logarithm of its

absolute value.
• factorial(x), lfactorial(x) For non-negative integer x, gamma(x+1) and

lgamma(x+1).
• digamma(x), trigamma(x) The first and second derivatives of lgamma(x)
• psigamma(x, d) The d-th (d >= 0) derivative of digamma(x); sometimes called

the polygamma function. The default is d = 0.

> gamma(7)

[1] 720

> trigamma(10.3)

[1] 0.102

> psigamma(10.3,1)

[1] 0.102

SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS 75

4.5.3 Binomial coefficients

• choose(n, k), lchoose(n, k) Binomial coefficient and log of its absolute
value.

> choose(7,5)

[1] 21

> factorial(7)/(factorial(5)*factorial(2))

[1] 21

4.6 Special functions of mathematical physics

4.6.1 The gsl package

The foremost package for special functions in mathematical physics is gsl. The gsl
package provides an R wrapper for the special functions and quasi random number
generators of the Gnu Scientific Library (http://http://www.gnu.org/software/gsl/).

Many special functions of mathematical physics are covered in the Gnu Scientific
Library. Functions included (each with all the standard variants) are:
Airy, Bessel, Clausen, Coulomb, Coupling, Dawson, Debye, Dilog, Ellint,

Elljac, Error, Expint, Fermi-Dirac, Gamma, Gegenbauer, Hyperg, Laguerre,

Lambert, Legendre, Log,Poly, Powint, Psi, zeta, and trigonometric functions.
As stated in the gsl package documentation, documentation is generally limited

to a pointer to the GSL reference book and reproductions of some tables and figures
in Abramowitz and Stegun (1964).

As an example, we use the gsl package to plot the Laguerre polynomials of order
2–5 (Figure 2.5).
> install.packages("gsl")

> library(gsl)

> x = seq(from=0,to=6,len=100)

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> plot(x,laguerre_n(2,0,x),xlim=c(0,6),ylim=c(-2,3),

+ type="l",bty="L",xlab="x",ylab="Laguerre(n,x)")

> lines(x,laguerre_n(3,0,x), lty=2)

> lines(x,laguerre_n(4,0,x), lty=3)

> lines(x,laguerre_n(5,0,x), lty=4)

> legend("topleft", legend=c(2:5), lty=c(1:4), bty="n")

Readers are urged to explore this rich resource to find the special functions of
interest to them. Special functions of mathematical physics, especially the various
orthogonal polynomials, are also available in the orthopolynom package discussed
later in this chapter.

4.6.2 Special functions in other packages

One interesting package is hypergeo, which provides very accurate calculations
of the hypergeometric and generalized hypergeometric functions, applying different

76 PROGRAMMING AND FUNCTIONS

0 1 2 3 4 5 6

-2
-1

0
1

2
3

x

La
gu
er
re
(n
,x
)

2
3
4
5

Figure 4.5: Laguerre polynomials.

representations such as power series, Euler’s integral, or continued fractions. These
different representations guarantee an accuracy that one computational method alone
will not reach. hypergeo depends on two other packages: contfrac and elliptic;
the latter did not have a binary available for OS X at the time of this writing.

Examples of two of the rare cases where the hypergeometric function returns a
rational value:
> hypergeo(1/3, 2/3, 5/6, 27/32)

[1] 1.6+0i # [1] 1.6 = 8/5

> hypergeo(1/4, 1/2, 3/4, 80/81)

[1] 1.8+0i # [1] 1.8 = 9/5

The pracma package provides many special functions of use in science and en-
gineering. These include (function names in parentheses):
• Chebyshev polynomials (chebPoly)
• Dirichlet eta function (eta)
• Elliptic integrals (ellipke,ellipj)
• Error functions (erf, erfc, erfcinv, erfcx, erfi, erfinv)
• Exponential integral (expint)
• Fresnel integrals (fresnelS, fresnelC)
• Legendre functions, associated, first kind (legendre)
• Gamma function, incomplete (gammainc)
• Gamma function, complex (gammaz)
• Lambert W function (lambertWp)
• Polylogarithm function (polylog)
• Riemann zeta function (zeta)

Here, for example, we use pracma to visualize the Fresnel sine and cosine inte-
grals, S(x) and C(x), over the range (0,5) (Figure 4.6).

SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS 77

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

Fr
es

ne
l i

nt
eg

ra
ls

fS
fC

Figure 4.6: Fresnel sine and cosine integrals.

> require(pracma)

> fS = function(x) fresnelS(x)

> fC = function(x) fresnelC(x)

> curve(fS,0,5,ylim=c(0,0.8),ylab="Fresnel integrals")

> curve(fC,0,5,add=T,lty=3)

> legend("bottomright",legend=c("fS","fC"),lty=c(1,3), bty="n")

There are several equivalent definitions of the Fresnel integrals, differing in nor-
malization and scaling: pracma uses

S(x) =
∫ x

0
sin
(

π

2
t2
)

dt, C(x) =
∫ x

0
cos
(

π

2
t2
)

dt (4.2)

Other definitions (Abramowitz and Stegun, 1965, p. 300) are

S1(x) =

√
2
π

∫ x

0
sin(t2)dt, C1(x) =

√
2
π

∫ x

0
cos(t2)dt (4.3)

and
S2(x) =

1√
2π

∫ x

0

sin(t)√
t

dt, C2(x) =
1√
2π

∫ x

0

cos(t)√
t

dt (4.4)

Relations between these definitions are

S(x) = S1

(√
π

2
x
)

= S2

(
π

2
x2
)

(4.5)

with similar equations for the cosine integral. We shall use S2 and C2 in a calculation
at the end of this chapter.

The specfun package is another package devoted to special functions in mathe-
matics and physics. Functions included are:
• Gamma, Beta, Airy, and Psi functions
• Legendre functions of first and second kind

78 PROGRAMMING AND FUNCTIONS

• Bessel and modified Bessel functions, spherical Bessel functions, and integrals of
Bessel functions

• Kelvin, Struve, and Mathieu functions
• Hypergeometric (and confluent hypergeometric) functions
• Parabolic cylinder functions
• Spheroidal wave functions
• Error functions and Fresnel integrals
• Elliptic integrals and Jacobian elliptic functions
• Cosine and sine integrals
• Exponential integrals

One aspect of this package is that all functions, where appropriate, accept com-
plex arguments, whereas most special functions in R and other packages only work
for real arguments.

Because names like “beta” or “gamma” are so often used in R, all function names
in specfun are prepended with a “sp.” to avoid name clashes. For example the Beta
and Gamma functions are called sp.beta() and sp.gamma(), respectively.

4.7 Polynomial functions in packages

Univariate polynomials (polynomials in a single variable) play an important role in
science and engineering calculations, and R has three add-on packages for deal-
ing with them: polynom, PolynomF and orthopolynom. The relations between
these three is a bit complicated. PolynomF is the successor to polynom, while
orthopolynom requires polynom, which contains numerous functions that have the
same names as those in PolynomF. If there are name conflicts, the most recently
loaded package takes precedence (a behavior known as “shadowing” or “masking”),
so to avoid confusion only one should be loaded in a session.

We first install the three packages:
> install.packages(c("PolynomF","polynom","orthopolynom"))

If now we load PolynomF first, and then orthopolynom, we get
> require(PolynomF)

Loading required package: PolynomF

> require(orthopolynom)

Loading required package: orthopolynom

Loading required package: polynom

Attaching package: polynom

The following object(s) are masked from package:PolynomF:

as.polylist, change.origin, GCD, integral, is.polylist, LCM,

poly.calc, poly.from.roots, poly.from.values, poly.from.zeros,

poly.orth, polylist

POLYNOMIAL FUNCTIONS IN PACKAGES 79

If we quit and restart the session, reversing the loading order, we get
> require(orthopolynom)

Loading required package: orthopolynom

Loading required package: polynom

> require(PolynomF)

Loading required package: PolynomF

Attaching package: PolynomF

The following object(s) are masked from package:polynom:

as.polylist, change.origin, GCD, integral, is.polylist, LCM,

poly.calc, poly.from.roots, poly.from.values, poly.from.zeros,

poly.orth, polylist

4.7.1 PolynomF package

We consider PolynomF first. Having installed it, we load it and explore some of its
capabilities. Solving for the roots of polynomials, and differentiating and integrating
them, will also be dealt with in later chapters; but it is useful to recognize that the
PolynomF (and orthopolynom) packages have these functions in convenient form
for polynomials.

Note that below we use the function solve in quite a different context than we
used it previously to find the inverse of a matrix or to solve a set of linear algebraic
equations. This is an example of overloading, in which several functions or methods
may be defined with the same name, but which differ in the type of the input and the
output of the function.

> require(PolynomF)

Loading required package: PolynomF

> # Define a polynomial

> x = polynom() # Make x an object of class polynom

> p = x^3 - 3*x^2 - 2*x + 7

> # Ask the class of p. It should inherit the class of x

> class(p)

[1] "polynom"

> # Ask the modes of x and p. Both are functions.

> mode(x); mode(p)

[1] "function"

[1] "function"

1] "function"

A vector of the coefficients of the polynomial, with indices in ascending order,
can be generated with the coef function in PolynomR.

80 PROGRAMMING AND FUNCTIONS

> coef(p)

[1] 7 -2 -3 1

PolynomF can calculate with only one polynomial variable at a time, hence the
restriction to univariate polynomials. For example, we can define other polynomials
y and q(y), but combining them with x and p(x) leads to a polynomial in x only.
> y = polynom()

> class(y)

[1] "polynom"

> q = y^2 +2*y

> class(q)

[1] "polynom"

> p + q

7 - 2*x^2 + x^3

Using PolynomF we can perform arithmetic on polynomials:
> q = x^2 + 2 # Redefine q from example above

> p+q

9 - 2*x - 2*x^2 + x^3

> p-q

5 - 2*x - 4*x^2 + x^3

> p*q

14 - 4*x + x^2 - 3*x^4 + x^5

> round(p*q/5) # Each coefficient is rounded.

3 - x - x^4

> q^2

4 + 4*x^2 + x^4

The PolynomF package enables differential and integral calculus on polynomial
functions.
> dpdx = deriv(p,"x") # Differentiate p with respect to x

> dpdx

-2 - 6*x + 3*x^2

We plot p and its derivative, observing that dpdx passes through 0 at the maxima
and minima of p (Figure 4.7):
> p = x^3 - 3*x^2 - 2*x + 7

> dpdx = deriv(p,"x") # Differentiate p with respect to x

> dpdx

-2 - 6*x + 3*x^2

> curve(p,-2,3, ylab = "p(x), dp/dx")

> curve(dpdx, lty=2, add=T)

> abline(0,0, col = gray(.7))

> dpdx_zeros = solve(dpdx)

> dpdx_zeros

[1] -0.2909944 2.2909944

> abline(v=dpdx_zeros[1], col=gray(.7))

POLYNOMIAL FUNCTIONS IN PACKAGES 81

-2 -1 0 1 2 3

-5
0

5

x

p(
x)

, d
p/

dx

Figure 4.7: Plot of a polynomial and its first derivative.

> abline(v=dpdx_zeros[2], col=gray(.7))

We can integrate the derivative, recovering the polynomial except for the constant
term, and we can evaluate the definite integral of p:
> integral(dpdx)

-2*x - 3*x^2 + x^3

> integral(p,limits = c(-2,3))

[1] 11.25

Given a set of zeros, we can calculate the polynomial that has those zeros:
> poly.from.zeros(c(-1,-1))

1 + 2*x + x^2

> poly.from.roots(c(-1,1)) # Alias for poly.from.zeros

-1 + x^2

Polynomials are often used to fit to (x,y) data. We shall discuss this further in
the chapter on fitting functions to data, but we note that PolynomF has the function
poly.calc that performs this fit (Figure 4.8).
> x = -3:3

> y = sin(x)

> polyfit = poly.calc(x,y) # Fit the sine function to a

polynomial in x

> polyfit

0.9941212*x - 0.1585776*x^3 + 0.005927377*x^5

> plot(x,y)

> curve(polyfit,add=T)

We can shift the origin of the polynomial, perhaps enabling a simplification. If q
and p are polynomials and q = change.origin(p,a), then q(x) = p(x + a).

> x = polynom()

> p = 1 + 2*x + x^2

> change.origin(p, -1)

82 PROGRAMMING AND FUNCTIONS

-3 -2 -1 0 1 2 3

-0
.5

0.
0

0.
5

x

y

Figure 4.8: Fitting data to a polynomial with poly.calc.

x^2

We can use recursion relations to generate higher order orthogonal polynomi-
als from the zeroth and first terms. (Note that the nth item in the list below is
the (n-1)st order polynomial.) We use the Hermite polynomial example from the
PolynomF.pdf reference manual, denoting them as He(n) to differentiate them
from the differently scaled Hermite polynomials H(n) used by physicists (e.g.,
Abramowitz and Stegun, 1965):

> x = polynom()

> He = polylist(1, x)

> for(j in 2:10) He[[j+1]] = x*He[[j]] - (j-1)*He[[j-1]]

> He

List of polynomials:

[[1]]

1

[[2]]

x

[[3]]

-1 + x^2

[[4]]

-3*x + x^3

[[5]]

3 - 6*x^2 + x^4

[[6]]

15*x - 10*x^3 + x^5

[[7]]

-15 + 45*x^2 - 15*x^4 + x^6

[[8]]

-105*x + 105*x^3 - 21*x^5 + x^7

[[9]]

POLYNOMIAL FUNCTIONS IN PACKAGES 83

-2 -1 0 1 2

-6
-4

-2
0

2

x

H
e5
(x
)

Figure 4.9: Plot of 5th Hermite polynomial.

105 - 420*x^2 + 210*x^4 - 28*x^6 + x^8

[[10]]

945*x - 1260*x^3 + 378*x^5 - 36*x^7 + x^9

[[11]]

-945 + 4725*x^2 - 3150*x^4 + 630*x^6 - 45*x^8 + x^10

Then individual polynomials may be picked out of the list by their indices, and
manipulated as functions (Figure 4.9).

> He5 = He[[5]]

> curve(He5,-2,2)

4.7.2 orthopolynom package

Generating orthogonal polynomials from their recursion relations, and then manipu-
lating them, is the special province of the orthopolynom package, to which we will
turn next. orthopolynom is a collection of functions to construct sets of orthogo-
nal polynomials and their recurrence relations. Additional functions are provided to
calculate the derivative, integral, value, and roots of lists of polynomial objects. (F.
Novometsky, Package orthopolynom, CRAN pdf, 2011). The polynomials included
are
• Chebyshev: first (T, C) and second (U, S) kinds, and shifted
• Gegenbauer
• Hermite (H, He) and generalized Hermite
• Laguerre and generalized (associated) Laguerre
• Jacobi (P, G)
• Legendre and shifted
• monic (descending powers, with leading coefficient unity)
• spherical

84 PROGRAMMING AND FUNCTIONS

• ultraspherical
For each type of polynomial, functions are given to calculate the inner product

(norm squared), a list of polynomials for orders from 0 to n, a coefficient vector of
recurrence relations, and the weight function for each order. Additional functions
are provided to calculate values for a given x, derivatives and indefinite integrals (in
symbolic form), powers, and roots, and to coerce the polynomials to functions.

As an example, consider the generalized Laguerre polynomials, perhaps better
known in quantum mechanics as the associated Laguerre polynomials that govern
the radial behavior of the electron in the hydrogen atom. By the code
> require(orthopolynom)

Loading required package: orthopolynom

Loading required package: polynom

> p.list = glaguerre.polynomials(3,1, normalized=FALSE)

> p.list

[[1]]

1

[[2]] 2-x

[[3]]

3 - 3*x + 0.5*x^2

[[4]]

4 - 6*x + 2*x^2 - 0.1666667*x^3

we get a list that contains the generalized Laguerre polynomials of degrees 1–4 and
order 1. In terms of the orbital description of the hydrogen atom, these correspond to
the s orbitals: 1s, 2s, 3s, and 4s. The p orbitals are of order 2, and would be generated
by glaguerre.polynomials(3,2). (The default is normalized=FALSE, so this
option need not be stated explicitly.), The number 3 would be given if we wanted the
first four degrees. (The convention in R is that numbering of vectors and lists starts
with 1, but the convention in polynomials is that the list begins with order zero.)

In p.list, x is just a symbol. If we want to turn p.list into a function of x that
can be used for calculation or graphing, we have to apply polynomial.functions.
> # Pick the third item in the list

> L31 = polynomial.functions(p.list)[[3]]

> L31(1.5)

[1] -0.375

We use this approach to plot the radial components of the 2s and 2p orbitals of
the hydrogen atom (Figure 4.10), where the associated Laguerre polynomials L1

2(x)
and L3

3(x) are squared and weighted by the factor x2e−x to account for normalization
and the volume element in spherical polar coordinates.

> orb2s = polynomial.functions(glaguerre.polynomials(2,1))[[2]]

> orb2p = polynomial.functions(glaguerre.polynomials(3,2))[[3]]

> curve(orb2p(x)^2*x^2*exp(-x),0,25,lty=2, xlab="r (reduced)",

ylab ="Electron Density", main = "2s and 2p Orbitals of H Atom")

> curve(orb2s(x)^2*x^2*exp(-x),0,25,add=T)

> legend("topright",legend=c("2s","2p"),lty=1:2,bty="n")

POLYNOMIAL FUNCTIONS IN PACKAGES 85

0 5 10 15 20 25

0.
0
0.
5
1.
0
1.
5
2.
0
2.
5

2s and 2p Orbitals of H Atom

r (reduced)

E
le

ct
ro

n
D

en
si

ty

2s
2p

Figure 4.10: Normalized associated Laguerre polynomials used to calculate the electron den-
sities of the 2s and 2p orbitals of the hydrogen atom.

The functions polynomial.derivatives and polynomial.integrals act on
a list of polynomials.
> polynomial.derivatives(p.list)

[[1]]

0

[[2]] -1

[[3]] -3 + x

[[4]]

-6 + 4*x - 0.5*x^2

> polynomial.integrals(p.list)

[[1]]

x

[[2]]

2*x - 0.5*x^2

[[3]]

3*x - 1.5*x^2 + 0.1666667*x^3

[[4]]

4*x - 3*x^2 + 0.6666667*x^3 - 0.04166667*x^4

and again a particular item can be picked out of the list:
> polynomial.derivatives(p.list)[[4]]

-6 + 4*x - 0.5*x^2

Although polynomial.integrals does not give a constant of integration, the
polynomial packages give R significant elements of a useful symbolic mathematics
capability.

86 PROGRAMMING AND FUNCTIONS

4.8 Case studies

4.8.1 Two-dimensional random walk

Earlier in this chapter we considered various models for one-dimensional random
walks. Things get considerably more interesting when considering random walks
in two (or more) dimensions. The walk can be taken in free space, as below, or
on various geometries of lattice, and can be either self-intersecting (as in diffusion
of a particle) or non-intersecting (as in the path of a linear polymer chain). This
last situation, sometimes called the “excluded volume effect,” leads to some deep
theoretical and computational challenges. Unfortunately, it would take us too far out
of our way to consider them here.

The model we consider in the code below is of a particle diffusing in random
directions, but with steps of constant length = 1, on a surface bounded by a circular
wall of radius Rmax. If a step leads to the particle colliding with the wall, it is rejected
and another random direction is chosen. This process is carried out in the while

loop of the code below, in which a test radius Rtest > Rmax is initially set, and the
generation of the next random step is repeated while Rtest remains greater than R.
> Rmax = 10 # radius of boundary

> N = 200 # number of steps

> coords = matrix(nrow=N+1,ncol=2) # x and y coordinates

> coords[1,1] = coords[1,2] = 0 # start at origin

> twopi = 2*pi

> for (i in 2:(N+1)) {

+ Rtest = 1.1*Rmax

+ while (Rtest > Rmax) {

+ xold = coords[i-1,1]

+ yold = coords[i-1,2]

+ theta = runif(1,0,twopi) # Random angle for next step

+ xstep = cos(theta) # x and y coords of next step

+ ystep = sin(theta)

+ xnew = xold + xstep # New trial x and y coords

+ ynew = yold + ystep

+ R = sqrt(xnew^2 + ynew^2) # New distance from origin

+ # If inside Rmax, reset Rtest to exit while loop

+ if (R < Rmax) Rtest = R

+ }

+ coords[i,1] = coords[i-1,1] + xstep # New x, y coords

+ coords[i,2] = coords[i-1,2] + ystep

+ }

After N successful steps have been taken, we plot the path of the particle inside
the circular boundary (Figure 4.11).
> plot.new() # New plot frame with no axes

> par(mar=c(0,0,0,0)) # Minimize margins

> # Make a square plot window with no box outlining it

CASE STUDIES 87

Figure 4.11: Path of a two-dimensional random walk confined to a circular domain.

> plot.window(c(-Rmax,Rmax), c(-Rmax,Rmax), asp=1,bty="n")

> # Draw a polygon with 50 sides, approximating a circle

> polygon(Rmax*cos(2*pi*(0:50/50)), Rmax*sin(2*pi*(0:50/50)))

> # Plot (x,y) of the particle path

> lines(coords[,1],coords[,2])

Note how the particle “bounces off” the wall if it tries to go too far.

4.8.2 Eigenvalues of a polymer chain

We conclude this chapter with a calculation that brings together a number of the
topics we have covered in this and previous chapters: functions in packages and
user-defined functions, matrix construction, loops, conditionals, complex numbers,
eigenvalue calculations, and rounding and sorting of numerical results. The code
below recapitulates work done by Zimm et al. (1956) to calculate the eigenvalues of a
matrix arising in the theory of polymer dynamics. The eigenvalues are proportional to
the bending frequencies of the chain. In hydrodynamics, it is the lowest frequencies
(slowest motions), hence the smallest eigenvalues, that are of greatest interest.

It might well be argued that the hardest work came in developing the analyti-
cal expressions for the matrix elements, but in 1956—before the general availabil-
ity of digital computers and the numerical analysis codes whose development they
facilitated—the numerical work was difficult, tedious, and fraught with potential for
error. Now it takes just a few lines of code and a few milliseconds of personal com-
puter time.

The expressions for the matrix elements involve the Fresnel sine and cosine
integrals. Zimm et al. used the definition of the Fresnel integrals in Equation
4.4. We use Equation 4.5 to convert to S2(x) and C2(x) from the definitions for
fresnelS and fresnelC used in the pracma package, and plot the comparison
curves (Figure 4.12).
> require(pracma)

> S2 = function(x) fresnelS(sqrt(2*x/pi))

88 PROGRAMMING AND FUNCTIONS

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

x

S
(x

),
S

2(
x)

S2
S

Figure 4.12: Comparison of S2 and S function definitions for Fresnel sine integral.

> C2 = function(x) fresnelC(sqrt(2*x/pi))

> curve(S2,0,5)

> curve(fresnelS,0,5,lty=2,add=T)

The matrix G whose eigenvalues we wish to find has elements

G0m = 2πm1/2(−1)(m/2+1)S2(πm), (4.6)

Glm = 2π(−1)(m−l+2)/2 m2

l2−m2 [l1/2S2(πl)−m1/2S2(πm)], l 6= 0,m, (4.7)

Gkk =
πk1/2

2
[2πkC2(πk)−S(πk)]. (4.8)

These equations are implemented in the R code below. Note that the fac-
tors of the form (−1)m/2+1 will give the result NaN if m is odd and an imag-
inary part not exactly 0 if m is even. Therefore we have used the formulation
Re(round((-1+0i)^((m1/2)+1), 0)) to get the appropriate values of 0 if m is
odd and ±1 if m is even. We follow Zimm et al. in calculating only the first eight
rows and columns of the matrix, which is sufficient to calculate the lowest frequen-
cies. However, since their matrix indices started at 0, while R’s start at 1, we must
subtract 1 from the indices before evaluating the elements.

> G = matrix(nrow=8,ncol=8)

> for (m in 1:8) { # First row

+ m1 = m-1

+ v = Re(round((-1+0i)^((m1/2)+1), 0))

+ G[1,m] = 2*pi*m1^(1/2)*v*S2(pi*m1)

+ }

>

> for (m in 1:8) {

+ m1 = m-1

+ for (l in 1:8) {

+ l1 = l-1

CASE STUDIES 89

+ if (l1 == m1) next

+ v = Re(round((-1+0i)^((m1-l1+2)/2), 0))

+ vw = 2*pi*v*m1^2/(l1^2-m1^2)

+ G[l,m] = vw*(sqrt(l1)*S2(pi*l1)-sqrt(m1)*S2(pi*m1))

+ }

+ }

>

> for (k in 1:8) { # Diagonal

+ k1 = k-1

+ G[k,k] = pi*sqrt(k1)/2*(2*pi*k1*C2(pi*k1)-S2(pi*k1))

+ }

We display the matrix elements rounded to three decimals.
> round(G,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0.000 3.052 0.000 -4.875 0.000 6.284 0.000

[2,] 0 4.098 0.000 2.653 0.000 -4.113 0.000 5.347

[3,] 0 0.000 12.867 0.000 2.432 0.000 -3.637 0.000

[4,] 0 0.295 0.000 24.271 0.000 2.485 0.000 -3.527

[5,] 0 0.000 0.608 0.000 37.914 0.000 2.536 0.000

[6,] 0 -0.165 0.000 0.895 0.000 53.413 0.000 2.632

[7,] 0 0.000 -0.404 0.000 1.127 0.000 70.606 0.000

[8,] 0 0.109 0.000 -0.648 0.000 1.343 0.000 89.314

Finally, we calculate the eigenvalues, round the results to three decimals, and sort
the values in ascending order.
> sort(round(eigen(G)$values,3))

[1] 0.000 4.035 12.779 24.200 37.892 53.412 70.715 89.449

The results agree with those of Zimm et al. to within ±1 in the last decimal.

Chapter 5

Solving systems of algebraic equations

Solving equations is central to numerical analysis, and R has numerous tools for
doing so. We begin by extending our consideration of polynomials from the previous
chapter.

5.1 Finding the zeros of a polynomial

The base installation of R has the function polyroot to find the zeros of a real or
complex polynomial, specified by the vector of its coefficients in ascending order.
This function uses the algorithm of Jenkins and Traub (Jenkins and Traub (1972)
TOMS Algorithm 419. Comm. ACM, 15, 9799). For example,
> polyroot(c(4,5,6))

[1] -0.4166667+0.7021791i -0.4166667-0.7021791i

Using the package PolynomF , the code is a bit more cumbersome
> x = polynom()

> (q = solve(4 + 5*x + 6*x^2)) # Solve and display in one line

[1] -0.4166667-0.7021791i -0.4166667+0.7021791i

but PolynomF has the advantage that the polynomial can be calculated from the roots,
to within a normalization factor:
> poly.calc(q)

0.6666667 + 0.8333333*x + x^2

On the other hand, polyroot can solve for the zeros of polynomials with com-
plex coefficients, while PolynomF cannot. For example, the roots of the complex
polynomial 1 + 2ix + (3−7i)x2 are found as follows:
> polyroot(c(1, 2i, 3-7i))

[1] -0.1019883+0.2473059i 0.3433676-0.3507542i

To see how close to zero the polynomial is at the roots:
> sol = polyroot(c(1, 2i, 3-7i))

> p = function(x) 1 + 2i*x + (3-7i)*x^2

> p(sol[1])

[1] 0+2.775558e-17i

> p(sol[2])

[1] -6.661338e-16-1.110223e-16i

91

92 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

There are certain “pathological” polynomials for which finding roots should be
easy, but isn’t. The prime example is Wilkinson’s polynomial (http://en.wikipedia.org/
wiki/Wilkinson’s polynomial; Acton, p. 201):

W (x) =
20

∏
i=1

(x− i) = (x−1)(x−2) . . . (x−20)

Obviously the roots are the integers 1 to 20 and they are well separated, but there are
limitations in the precision available to the root-solving functions that undermine the
process, both with polyroot and with solve, which uses an eigenvalue computa-
tion. Jenkins–Traub is usually the most reliable, but in this case neither works.
> require(PolynomF)

> x = polynom()

> W=(x-1)

> for (j in 2:20) W = W*(x-j)

> solve(W)

[1] 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000

[7] 6.999973 8.000284 8.998394 10.006060 10.984041 12.033449

[13] 12.949056 14.065273 14.935356 16.048275 16.971132 18.011222

[19] 18.997160 20.000325

Now try with polyroot, after getting the polynomial coefficients with coif(W).
> polyroot(coef(W))

[1] 1.000000+0.000000i 2.000000+0.000000i 3.000000-0.000000i

[4] 4.000000+0.000000i 5.000000-0.000000i 7.000005-0.000014i

[7] 5.999999+0.000002i 9.000227-0.000165i 7.999960+0.000059i

[10] 11.002737-0.000451i 11.993971+0.000451i 9.999080+0.000322i

[13] 13.986821+0.000200i 15.013075-0.000118i 13.010246-0.000335i

[16] 17.005442-0.000049i 17.997884+0.000022i 15.990103+0.000082i

[19] 19.000507-0.000005i 19.999943+0.000000i

5.2 Finding the zeros of a function

A common task in numerical analysis is to determine the roots of a function, the
places where its value equals zero. Base R has the function uniroot for doing this,
but we shall begin by coding two simpler methods that are often used.

5.2.1 Bisection method

The bisection method brackets an interval in which a root of the function f (x) must
lie, then repeatedly bisects the interval until a root is found within the desired pre-
cision. The initial guesses for the lower and upper limits, xmin and xmax, of the
interval must give function values of opposite signs, since then a zero crossing is
guaranteed to lie between them. In the code below, the default value of the desired
precision is set to tol = 1e-5; this can be changed as desired.

FINDING THE ZEROS OF A FUNCTION 93

> bisectionroot = function(f, xmin, xmax, tol=1e-5) {

+ a = xmin; b = xmax

+ # Check inputs

+ if (a >= b) {

+ cat("error: xmin > xmax \n")

+ return(NULL)

+ }

+ if (f(a) == 0) {

+ return(a)

+ } else if (f(b) == 0) {

+ return(b)

+ } else if (f(a)*f(b) > 0) {

+ cat("error: f(xmin) and f(xmax) of same sign \n")

+ return(NULL)

+ }

+ # If inputs OK, converge to root

+ iter = 0

+ while ((b-a) > tol) {

+ c = (a+b)/2

+ if (f(c) == 0) {

+ return(c)

+ } else if (f(a)*f(c) < 0) {

+ b = c

+ } else {

+ a = c

+ }

+ iter = iter + 1

+ }

+ return(c((a+b)/2, iter, (b-a))) # root, iterations, precision

+ }

We use bisectionroot to find a root of the function f (x) = x3− sin(x)2, obtain-
ing
> f = function(x) x^3 - sin(x)^2

> bisectionroot(f,0.5,1)

[1] 8.028069e-01 1.600000e+01 7.629395e-06

5.2.2 Newton’s method

A second commonly used algorithm for root-finding is Newton’s method, also known
as the Newton–Raphson method. This method obtains an improved estimate x1 for
the root from an initial guess x0 according to the equation

x1 = x0−
f (x0)
f ′(x0)

, (5.1)

94 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

iterating until the desired precision is reached or the maximum number of iterations
is exceeded. The method is implemented by the following code:
> newtonroot = function(f, df, x0, tol=1e-5, maxit = 20) {

+ root = x0

+ for (jit in 1:maxit) {

+ dx = f(root)/df(root)

+ root = root - dx

+ if (abs(dx) < tol) return(c(root, jit, dx))

+ }

+ print(" Maximum number of iterations exceeded.")

+ }

We test the code with the same function as before, but supply the required first
derivative as well.
> f = function(x) x^3 - sin(x)^2

> df = function(x) 3*x^2 - 2*cos(x)*sin(x)

> newtonroot(f,df,1)

[1] 8.028037e-01 5.000000e+00 4.275506e-08

Note that newtonroot required 5 iterations to converge, while bisectionroot
required 16. The latter is generally slower than other methods, but is guaranteed to
converge, while alternatives may sometimes not do so.

5.2.3 uniroot and uniroot.all

The base installation of R has the function uniroot() to search for a root of a
function f in a specified interval. If successful, it yields the root, the value of f at
the root, the number of iterations to achieve the desired tolerance, and the estimated
precision of the root. The help page for uniroot says that it uses the Brent method.
According to Numerical Recipes in Fortran 77, 2nd ed., pp. 353-4, “Brent’s method
combines root bracketing, bisection, and inverse quadratic interpolation to converge
from the neighborhood of a zero crossing. ... [It thereby] combines the sureness of
bisection with the speed of a higher-order method when appropriate.”

Consider the function f (x,a) = x1/3 sin(5x)− a
√

x. (Figure 5.1) We treat a as a
parameter, rather than a constant, to demonstrate how to treat a parameter in plotting
and root-finding contexts.
> f = function(x,a) x^(1/3)*sin(5*x) - a*x^(1/2)

> curve(f(x,a=0.5),0,5)

> abline(h=0, lty=3)

> uniroot(f,c(.1,1),a=0.5)

$root

[1] 0.5348651

$f.root

[1] -2.762678e-05

$iter [1] 7

FINDING THE ZEROS OF A FUNCTION 95

0 1 2 3 4 5

-2
.5

-1
.5

-0
.5

0.
5

x

f(x
, a

 =
 0

.5
)

Figure 5.1: The function f(x,a) with a = 0.5. Roots are located by the points command once
they have been calculated by uniroot.all.

$estim.prec

[1] 6.103516e-05

In this example, we started the root search in the region c(0.1,1) rather than
c(0,1 because the function must be of opposite signs at the beginning and end of
the interval. If not, an error message is generated.
> uniroot(f,c(.1,.5),a=0.5)

Error in uniroot(f, c(0.1, 0.5)) :

f() values at end points not of opposite sign

If the function has several zeros in the region of interest, the function
uniroot.all from the package rootSolve (which uses uniroot) should find all
of them, though success is not guaranteed in pathological cases.
> require(rootSolve)

Loading required package: rootSolve

> zpts=uniroot.all(f,c(0,5),a=0.5)

> zpts

[1] 0.00000000 0.06442212 0.53483060 1.36761623 1.76852629

[6] 2.63893168 3.01267402 3.90557382 4.26021380

> yz=rep(0,length(zpts))

> points(zpts,yz) # Locate roots on graph of function

Note that uniroot.all does not provide the information about convergence and
precision that uniroot does. Note also the differences in how to deal with the pa-
rameter a in the calls to curve and in uniroot or uniroot.all.

uniroot will not work if the function only touches, but does not cross, the x
axis, unless one end of the search range is exactly at the root. For example,
> ff = function(x) sin(x)+1

> uniroot(ff,c(-pi,0))

Error in uniroot(ff, c(-pi, 0)) :

f() values at end points not of opposite sign

96 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

but

> uniroot(ff,c(-pi,-pi/2))

$root

[1] -1.570796

$f.root

[1] 0

$iter

[1] 0

$estim.prec

[1] 0

Of course, if the position of the root is already known, there is no need to do the cal-
culation. In general, however, it may be best to seek the minimum of such a function
by procedures discussed later in this book in the chapter on optimization.

5.3 Systems of linear equations: matrix solve

The need to solve systems of linear equations arises in nearly all fields of science
and engineering. Such equations can be formulated as Ax = B where A is a square
n×n matrix, B is a vector of length n, and x is the vector (length n) to be solved for.
Formally, x = A−1B where A−1 is the inverse of A. However, computing the inverse
and then multiplying is inefficient and prone to inaccuracy. R uses the finely honed
routines in LAPACK (Linear Algebra PACKage), the standard software library for
numerical linear algebra. It invokes these routines with the solve function.

The mechanics can be illustrated simply with a 4x4 random matrix m and 4-
vector b.
> options(digits=3)

> set.seed(3)

> m = matrix(runif(16), nrow = 4)

> m

[,1] [,2] [,3] [,4]

[1,] 0.168 0.602 0.578 0.534

[2,] 0.808 0.604 0.631 0.557

[3,] 0.385 0.125 0.512 0.868

[4,] 0.328 0.295 0.505 0.830

> b = runif(4)

>b

[1] 0.111 0.704 0.897 0.280

> solve(m,b)

[1] 0.528 -3.693 5.850 -2.121

> m%*%solve(m,b) # Should recover b

[,1]

[1,] 0.111

[2,] 0.704

[3,] 0.897

MATRIX INVERSE 97

[4,] 0.280

> solve(m)%*%b # Same: multiply b by inverse of m

[,1]

[1,] 0.528

[2,] -3.693

[3,] 5.850

[4,] -2.121

5.4 Matrix inverse

It is rarely necessary to calculate the inverse of a matrix, but if it is so desired it is
readily obtained with solve().

> set.seed(333)

> M = matrix(runif(9), nrow=3)

> M

[,1] [,2] [,3]

[1,] 0.46700066 0.57130558 0.60939363

[2,] 0.08459815 0.02011937 0.30671935

[3,] 0.97348527 0.72355739 0.06350984

> Minv = solve(M)

> Minv

[,1] [,2] [,3]

[1,] -2.4561314 4.504248 1.8140634

[2,] 3.2638470 -6.273329 -1.0205667

[3,] 0.4633475 2.429467 -0.4334035

> Minv%*%M

[,1] [,2] [,3]

[1,] 1.000000e+00 -2.220446e-16 0.000000e+00

[2,] 0.000000e+00 1.000000e+00 6.938894e-17

[3,] 5.551115e-17 5.551115e-17 1.000000e+00

> zapsmall(Minv%*%M)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

5.5 Singular matrix

In the code below, matrix A.sing is singular because columns 2 and 4 are propor-
tional to each other. In this case the system of equations cannot be solved.
> A.sing = matrix(c

(1,2,-1,-2,2,1,1,-1,1,-1,2,1,1,3,-2,-3),nrow=4,byrow=T)

> A.sing

[,1] [,2] [,3] [,4]

[1,] 1 2-1-2

98 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

0 20 40 60 80 100

0.
5

1.
0

1.
5

tC

vi
sc

Figure 5.2: Viscosity of water fit to a quadratic in temperature.

[2,] 2 1 1 -1

[3,] 1 -1 2 1

[4,] 1 3-2-3

> B = c(-1,4,5,-3)

> solve(A.sing,B)

Error in solve.default(A.sing, B) :

LAPACK routine dgesv: system is exactly singular

5.6 Overdetermined systems and generalized inverse

A matrix has an inverse as usually defined only when it is square. If it has more rows
than columns, this is equivalent to the overdetermined system Ay = b where there are
more equations than unknowns. The unknowns y may be solved in the least-squares
sense using one of several methods in base R or its packages. Consider, for example,
three ways of fitting the viscosity of liquid water to a quadratic in Celsius temperature
(Figure 5.2).

> options(digits=3)

> tC = seq(0,100,10) # Temperatures between freezing and boiling

> visc = c(1.787,1.307,1.002,0.798,0.653,0.547,0.467,

+ 0.404,0.355,0.315,0.282)

> plot(tC,visc)

> const = rep(1,length(tC)) # For proper representation of quadratic

> tC_sq = tC^2

> A = cbind(const,tC,tC_sq)

(1) qr.solve in base R:
> qr.solve(A,visc)

const tC tC_sq

1.665685 -0.032501 0.000194

> # or equivalently

> solve(qr(A,LAPACK=TRUE),visc)

[1] 1.665685 -0.032501 0.000194

SPARSE MATRICES 99

(2) the generalized inverse function ginv defined in the MASS package.
> require(MASS)

> gv = ginv(A)%*%visc

> gv

[,1]

[1,] 1.665685

[2,] -0.032501

[3,] 0.000194

Define a function with the calculated coefficients

> g = function(x) gv[1,1] + gv[2,1]*x + gv[3,1]*x^2

Superimpose the function plot on the data points

> curve(g(x),0,100,add=T)

(3) the Solve function in the limSolve package, which must first be installed,
and which automatically loads three other packages on which it depends. Solve also
uses the generalized inverse function ginv from MASS.
> install.packages("limSolve")

> require(limSolve)

Loading required package: limSolve

Loading required package: quadprog

Loading required package: lpSolve

Loading required package: MASS

> Solve(A,visc)

const tC tC_sq

1.665685 -0.032501 0.000194

As we shall see in a later chapter, we would normally do such data fitting using a
linear model, which would give estimates of the uncertainties in the parameters.

If, on the other hand, there are fewer equations than unknowns, there are no
unique solutions. If there are N unknowns and M equations, there will generally be
an N −M-dimensional family of solutions. Singular value decomposition can find
the subspace of solutions. See svd later in this chapter in the section on matrix de-
compositions.

5.7 Sparse matrices

Sparse matrices are ones in which only a small fraction of the entries are non-zero.
Modern computers are so fast that special treatment is usually needed only for very
large sparse matrices, but the R packages limSolve, Matrix, and SparseM provide
such capability when needed.

5.7.1 Tridiagonal matrix

Perhaps the most commonly encountered type of sparse matrix is the tridiagonal ma-
trix, in which only the main diagonal and the diagonals just above and below it have
non-zero entries. Such matrices may arise when considering interactions between

100 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

neighbors to the right and left. We first set up and solve a small problem (Hanna and
Sandall, pp. 40-43) using the solve function in the base R installation.

> n = 11 # Size of matrix

> m = matrix(n,n,data=0) # Set up square matrix

> # Put ones below the diagonal

> aa = rep(1,n)

> aa[1] = aa[n] = 0 # Except first and last element

> aa = aa[-1] # Trim aa to fit below the diagonal

> # Set up diagonal

> bb = rep(-1.99,n)

> bb[1] = bb[n] = 1

> # Put ones above the diagonal

> cc = rep(1,n)

> cc[1] = cc[n] = 0 # Except first and last element

> cc = cc[-n] # Trim cc to fit above the diagonal

> # Define rhs of linear system

> d = rep(0,n)

> d[1] = 0.5

> d[n] = 0.69

> # Assemble matrix

> m[1,1:2] = c(bb[1],cc[1])

> m[n,(n-1):n] = c(aa[n-1],bb[n])

> for (i in 2:(n-1)) m[i,(i-1):(i+1)] = c(aa[i-1],bb[i],cc[i])

> options(digits=3)

> # Solve

> soln = solve(m,d)

> soln

[1] 0.500 0.547 0.589 0.625 0.655 0.678 0.694 0.704

[9] 0.706 0.702 0.690

Now suppose that the set of equations to be solved gets 100 or 1000 times bigger.
On my 2012 laptop, for n = 1001,

user system elapsed

0.331 0.004 0.332

and for n = 10001
user system elapsed

341.84 8.24 371.07

SPARSE MATRICES 101

This is close to expected since the solve algorithm goes as n3. Now try with
Solve.tridiag from the limSolve package. This algorithm goes as n. We need to
provide just the vectors, not the matrix m.

> require(limSolve)

> n = 1001

> # Above-diagonal vector

> aa = rep(1,n)

> aa[1] = aa[n] = 0

> aa=aa[-1]

> # Diagonal vector

> bb = rep(-1.99,n)

> bb[1] = bb[n] = 1

> # Below-diagonal vector

> cc = rep(1,n)

> cc[1] = cc[n] = 0

> cc=cc[-n]

> # rhs of system

> d = rep(0,n)

> d[1] = 0.5

> d[n] = 0.69

> system.time(tri.soln <- Solve.tridiag(aa,bb,cc,d))

user system elapsed

0 0 0

For n = 10001
user system elapsed

0.006 0.001 0.010

The time saved is huge, a reduction from minutes to milliseconds.

5.7.2 Banded matrix

Less frequently encountered, but still worth considering, are banded matrices. These
have non-zero entries only on the main diagonal and on nup diagonals above and
nlow diagonals below the main diagonal. limSolve provides the Solve.banded

function for such matrices.
> require(limSolve)

> options(digits=3)

> set.seed(333)

102 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

> n = 500 # 500 x 500 matrix

> # Lower diagonals

> dn1 = runif(n-1)

> dn2 = runif(n-2)

> # Diagonal

> bb = runif(n)

> # Upper diagonals

> up1 = runif(n-1)

> up2 = runif(n-2)

> # Assemble matrix

> abd = rbind(c(0,0,up2),c(0,up1),bb,c(dn1,0),c(dn2,0,0))

> B = runif(n) # rhs of system

> system.time(Band <- Solve.banded(abd, nup=2, nlow=2,B))

user system elapsed

0 0 0

> Band[1:5] # Show the first five values in solution vector

[1] 11.847 -21.239 0.246 -2.005 -9.015

We compare with solve, which gives the same result and is not much slower for
n = 500.
> bndmat = matrix(nrow=n,ncol=n,data=rep(0,n*n))

> diag(bndmat) = bb

> for(i in 1:(n-2)) bndmat[i+2,i] = dn2[i]

> for(i in 1:(n-1)) bndmat[i+1,i] = dn1[i]

> for(i in 1:(n-1)) bndmat[i,i+1] = up1[i]

> for(i in 1:(n-2)) bndmat[i,i+2] = up2[i]

> system.time(bnd <- solve(bndmat,B))

user system elapsed

0.036 0.000 0.036

> bnd[1:5]

[1] 11.847 -21.239 0.246 -2.005 -9.015

5.7.3 Block matrix

A block matrix may be viewed as a matrix of distinct smaller matrices, typically ar-
rayed on or near the diagonal of the full matrix. They may be encountered, for exam-
ple, in input-output tables where the inputs fall into discrete clusters. The limSolve
package has the function Solve.block that “solves the linear system A*X=B where
A is an almost block diagonal matrix of the form:
TopBlock

SPARSE MATRICES 103

... Array(1)

... ... Array(2)

...

... Array(Nblocks)...

... BotBlock’’

As one of many examples of R routines calling a faster compiled language,
Solve.block uses the FORTRAN subroutine colrow, whose “method is based on
Gauss elimination with alternate row and column elimination with partial pivoting,
producing a stable decomposition of the matrix A without introducing fill-in.” We
illustrate with the example from the help page for Solve.block.
> # Define matrix dimensions, set elements to 0

> AA = matrix (nr= 12, nc=12, 0)

> # Enter matrix elements

> AA[1,1:4] = c(0.0, -0.98, -0.79, -0.15)

> AA[2,1:4] = c(-1.00, 0.25, -0.87, 0.35)

> AA[3,1:8] = c(0.78, 0.31, -0.85, 0.89, -0.69, -0.98, -0.76, -0.82)

> AA[4,1:8] = c(0.12, -0.01, 0.75, 0.32, -1.00, -0.53, -0.83, -0.98)

> AA[5,1:8] = c(-0.58, 0.04, 0.87, 0.38, -1.00, -0.21, -0.93, -0.84)

> AA[6,1:8] = c(-0.21, -0.91, -0.09, -0.62, -1.99, -1.12, -1.21, 0.07)

> AA[7,5:12] = c(0.78, -0.93, -0.76, 0.48, -0.87, -0.14, -1.00, -0.59)

> AA[8,5:12] = c(-0.99, 0.21, -0.73, -0.48, -0.93, -0.91, 0.10, -0.89)

> AA[9,5:12] = c(-0.68, -0.09, -0.58, -0.21, 0.85, -0.39, 0.79, -0.71)

> AA[10,5:12] = c(0.39, -0.99, -0.12, -0.75, -0.68, -0.99, 0.50, -0.88)

> AA[11,9:12] = c(0.71, -0.64, 0.0, 0.48)

> AA[12,9:12] = c(0.08, 100.0, 50.00, 15.00)

>

> AA # Show matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.00 -0.98 -0.79 -0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[2,] -1.00 0.25 -0.87 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[3,] 0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76 -0.82 0.00 0.00 0.00

[4,] 0.12 -0.01 0.75 0.32 -1.00 -0.53 -0.83 -0.98 0.00 0.00 0.00

[5,] -0.58 0.04 0.87 0.38 -1.00 -0.21 -0.93 -0.84 0.00 0.00 0.00

[6,] -0.21 -0.91 -0.09 -0.62 -1.99 -1.12 -1.21 0.07 0.00 0.00 0.00

[7,] 0.00 0.00 0.00 0.00 0.78 -0.93 -0.76 0.48 -0.87 -0.14 -1.00

[8,] 0.00 0.00 0.00 0.00 -0.99 0.21 -0.73 -0.48 -0.93 -0.91 0.10

[9,] 0.00 0.00 0.00 0.00 -0.68 -0.09 -0.58 -0.21 0.85 -0.39 0.79

[10,] 0.00 0.00 0.00 0.00 0.39 -0.99 -0.12 -0.75 -0.68 -0.99 0.50

[11,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 -0.64 0.00

[12,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 100.00 50.00

[,12]

[1,] 0.00

[2,] 0.00

[3,] 0.00

[4,] 0.00

[5,] 0.00

[6,] 0.00

[7,] -0.59

[8,] -0.89

[9,] -0.71

[10,] -0.88

[11,] 0.48

[12,] 15.00

104 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

The vector B (right-hand side of the system of equations) is
B = c(-1.92,-1.27,-2.12,-2.16,-2.27,-6.08,-3.03,-4.62,-1.02,

-3.52,0.55,165.08)

The matrix AA is divided into blocks as follows:
> Top = matrix(nr=2, nc=4, data=AA[1:2,1:4])

> Top

[,1] [,2] [,3] [,4]

[1,] 0 -0.98 -0.79 -0.15

[2,] -1 0.25 -0.87 0.35

> Bot = matrix(nr=2, nc=4, data=AA[11:12,9:12])

> Bot

[,1] [,2] [,3] [,4]

[1,] 0.71 -0.64 0 0.48

[2,] 0.08 100.00 50 15.00

> Blk1 = matrix(nr=4, nc=8, data=AA[3:6,1:8])

> Blk1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76 -0.82

[2,] 0.12 -0.01 0.75 0.32 -1.00 -0.53 -0.83 -0.98

[3,] -0.58 0.04 0.87 0.38 -1.00 -0.21 -0.93 -0.84

[4,] -0.21 -0.91 -0.09 -0.62 -1.99 -1.12 -1.21 0.07

Blk2 = matrix(nr=4, nc=8, data=AA[7:10,5:12])

> Blk2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.78 -0.93 -0.76 0.48 -0.87 -0.14 -1.00 -0.59

[2,] -0.99 0.21 -0.73 -0.48 -0.93 -0.91 0.10 -0.89

[3,] -0.68 -0.09 -0.58 -0.21 0.85 -0.39 0.79 -0.71

[4,] 0.39 -0.99 -0.12 -0.75 -0.68 -0.99 0.50 -0.88

We combine the inner blocks into a 4×8×2 array AR, since each is of dimension
4×8, and there are two of them.
> AR = array(dim=c(4,8,2),data=c(Blk1,Blk2))

The quantity overlap is the sum of the number of rows of Top and Bot. Com-
bining these results, we find that
> Solve.block(Top,AR,Bot,B,overlap=4)

yields a vector of 12 ones.

5.8 Matrix decomposition

The code underlying the matrix algorithms embodied in solve, limSolve, and
Matrix uses various decompositions of a matrix: factorization of the matrix into

MATRIX DECOMPOSITION 105

some canonical form. We shall not discuss these decompositions in detail, since our
interest is in using R functions to solve sets of equations, rather than delving into
how the functions work. However, we note the most common decompositions here.

5.8.1 QR decomposition

The QR decomposition of an m×n (not necessarily square) matrix factors the ma-
trix into an orthogonal m×m matrix Q and an upper triangular matrix R. It is invoked
in the base R installation with qr() and used to solve overdetermined systems in a
least-square sense with qr.solve(), being therefore useful in computing regres-
sion coefficients and applying the Newton–Raphson algorithm. In the Matrix pack-
age, x = "dgCMatrix" gives the QR decomposition of a general sparse double-
precision matrix.

We give two examples, starting with an overdetermined system with 4 equations
and 3 unknowns.
> set.seed(321)

> A = matrix((1:12)+rnorm(12),nrow=4)

> b = 2:5

> qr.solve(A,b) # Solution in a least-squares sense

[1] 0.625 1.088 -0.504

The QR decomposition of A, itself, is simply obtained by
> qr(A)

$qr

[,1] [,2] [,3]

[1,] -5.607 -13.2403 -21.515

[2,] 0.230 -3.9049 -4.761

[3,] 0.485 0.4595 1.228

[4,] 0.692 -0.0574 0.515

$rank

[1] 3

$qraux

[1] 1.48 1.89 1.86

$pivot

[1] 1 2 3

attr(,"class")

[1] "qr"

If, on the other hand, there are 3 equations and 4 unknowns, we have an under-
determined system.
> set.seed(321)

> A = matrix((1:12)+rnorm(12),nrow=3)

106 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

> b = 3:5

> qr.solve(A,b) # Default LAPACK = FALSE uses LINPACK

[1] -0.1181 0.8297 0.0129 0.0000

> solve(qr(A, LAPACK = TRUE),b)

[1] 0.0387 0.0000 -0.4514 0.6756

5.8.2 Singular value decomposition

The singular value decomposition svd() in the base installation decomposes a
rectangular matrix into the product UDVH, where D is a nonnegative diagonal matrix,
U and V are unitary matrices, and VH denotes the conjugate transpose of V (or simply
the transpose if V contains real numbers only). The singular values are the diagonal
elements of D. For square matrices, svd() and eigen() give equivalent eigenvalues.
In fact, the routines that R uses to calculate eigenvalues and eigenfunctions, based on
LAPACK and its predecessor EISPACK, are based on SVD calculations.

An example of singular value decomposition of a matrix with 6 rows and 5
columns, yielding a diagonal matrix of 5 singular values, which would be eigen-
values if the matrix were square:
> set.seed(13)

> A = matrix(rnorm(30), nrow=6)

> svd(A)

$d

[1] 3.603 3.218 2.030 1.488 0.813

$u

[,1] [,2] [,3] [,4] [,5]

[1,] -0.217 -0.4632 0.4614 0.164 0.675

[2,] -0.154 -0.5416 0.0168 -0.528 -0.444

[3,] 0.538 -0.1533 0.5983 -0.290 -0.124

[4,] 0.574 -0.5585 -0.5013 0.319 0.070

[5,] 0.547 0.3937 0.0449 -0.261 0.285

[6,] 0.104 0.0404 0.4190 0.664 -0.496

$v

[,1] [,2] [,3] [,4] [,5]

[1,] 0.459 -0.0047 0.712 -0.159 0.507

[2,] -0.115 -0.5192 -0.028 0.758 0.377

[3,] 0.279 0.7350 -0.355 0.352 0.363

[4,] 0.333 -0.4023 -0.604 -0.448 0.402

[5,] -0.766 0.1684 0.039 -0.275 0.554

MATRIX DECOMPOSITION 107

An interesting and insightful article about the geometric interpretation of the
SVD in terms of linear transformations, its theory, and some applications, is “A Sin-
gularly Valuable Decomposition: The SVD of a Matrix” by Dan Kalman.1

5.8.3 Eigendecomposition

The familiar process of finding the eigenvalues and eigenvectors of a square matrix
can be viewed as eigendecomposition. It factors the matrix into VDV−1, where D
is a diagonal matrix formed from the eigenvalues, and the columns of V are the
corresponding eigenvectors.

A familiar example from physics textbooks is a system of 3 masses of mass m
attached to parallel walls by 4 springs of force constant k. Analysis of this system
(e.g., Garcia, 2000, pp. 164–5) leads to the matrix equation 2 −1 0

−1 2 −1
0 −1 2

a = λa (5.2)

We wish to solve this equation for the eigenvalues λ = mω2/k leading to the char-
acteristic frequencies ω , and for the eigenvectors a. The analytical solutions, readily
obtained in this simple case, are λ = 2,2 +

√
2,2− sqrt2 with eigenvectors

a0 =

 1/
√

2
0

−1/
√

2

 , a± =

 1/2
∓1/
√

2
1/2

 (5.3)

These results agree with the numerical values obtained by the R code
> options(digits=3)

> M = matrix(c(2,-1,0,-1,2,-1,0,-1,2), nrow=3, byrow=TRUE)

> eigen(M)

$values

[1] 3.414 2.000 0.586

$vectors

[,1] [,2] [,3]

[1,] -0.500 -7.07e-01 0.500

[2,] 0.707 1.10e-15 0.707

[3,] -0.500 7.07e-01 0.500

5.8.4 LU decomposition

The LU decomposition factors a square matrix into a lower triangular matrix L
and an upper triangular matrix U. It can be called from the Matrix package with
the function lu(). LU decomposition is commonly used to solve square systems

1www.math.umn.edu/∼lerman/math5467/svd.pdf

108 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

of linear equations, since it is about twice as fast as QR decomposition. Here is an
example from the LU (dense) Matrix Decomposition help page.

> options(digits=3)

> set.seed(1)

> require(Matrix)

> mm = Matrix(round(rnorm(9),2), nrow = 3)

> mm

3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]

[1,] -0.63 1.60 0.49

[2,] 0.18 0.33 0.74

[3,] -0.84 -0.82 0.58

> lum = lu(mm)

> str(lum)

Formal class ’denseLU’ [package "Matrix"] with 3 slots

..@ x : num [1:9] -0.84 0.75 -0.214 -0.82 2.215 ...

..@ perm: int [1:3] 3 3 3

..@ Dim : int [1:2] 3 3

> elu = expand(lum)

> elu # three components: "L", "U", and "P", the permutation

$L

3 x 3 Matrix of class "dtrMatrix" (unitriangular)

[,1] [,2] [,3]

[1,] 1.0000 . .

[2,] 0.7500 1.0000 .

[3,] -0.2143 0.0697 1.0000

$U

3 x 3 Matrix of class "dtrMatrix"

[,1] [,2] [,3]

[1,] -0.840 -0.820 0.580

[2,] . 2.215 0.055

[3,] . . 0.860

$P

3 x 3 sparse Matrix of class "pMatrix"

[1,] . | .

[2,] . . |

[3,] | . .

5.8.5 Cholesky decomposition

The Cholesky decomposition is a special case of the LU decomposition for real,
symmetric, positive-definite square matrices. It is invoked from base or Matrix with

SYSTEMS OF NONLINEAR EQUATIONS 109

chol(). chol2inv in base R computes the inverse of a suitable matrix from its
Cholesky decomposition.

For example, the matrix M in the eigendecomposition section is real, symmetric,
and positive-definite. Its Cholesky decomposition is
> chol(M)

[,1] [,2] [,3]

[1,] 1.41 -0.707 0.000

[2,] 0.00 1.225 -0.816

[3,] 0.00 0.000 1.155

5.8.6 Schur decomposition

The Schur decomposition is available in the Matrix package. To quote from its
help page:

“If A is a square matrix, then A = Q T t(Q), where Q is orthogonal, and T is
upper block-triangular (nearly triangular with either 1 by 1 or 2 by 2 blocks
on the diagonal) where the 2 by 2 blocks correspond to (non-real) complex
eigenvalues. The eigenvalues of A are the same as those of T, which are easy
to compute. The Schur form is used most often for computing non-symmetric
eigenvalue decompositions, and for computing functions of matrices such as
matrix exponentials.”

See help(Schur) for some examples.

5.8.7 backsolve and forwardsolve

If a decomposition into triangular form has been achieved, the base functions
backsolve() and forwardsolve() solve systems of linear equations where the
coefficient matrix is upper or lower triangular. For example, if the right-hand side
of the equation of motion for the mass and spring system is the vector (0,1,0), the
system of equation may be solved as
> backsolve(chol(M), x=c(0,1,0))

[1] 0.408 0.816 0.000

5.9 Systems of nonlinear equations

5.9.1 multiroot in the rootSolve package

To solve for the roots of systems of nonlinear equations, one may use the
multiroot() function in the rootSolve package. It employs the Newton–Raphson
method, as described in any standard text on numerical analysis.

As a first example, consider the cubic equation

s3−3s2 + 4ρ = 0 (5.4)

which arises when Archimedes’ principle is used to calculate the ratio s of the height
submerged to the radius of a sphere in a fluid, where the ratio of sphere density to

110 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

0.0 1.0 2.0 3.0

0
1

2
3

x

fs
(x
)

Figure 5.3: Plot of the lhs of Equation 5.4.

fluid density is ρ . Suppose we want to use this equation to calculate the fraction
of the height of an iceberg (modeled as a sphere) that is submerged in water just
above freezing. The density ratio of ice to water near 0 ◦C is about 0.96. We plot the
equation and find that the physically sensible root is a little below 2. (The maximum
ratio of depth to diameter is 1, so the maximum ratio of depth to radius is 2.)
> fs = function(s) s^3 - 3*s^2 + 4*rho

> rho = 0.96

> curve(fs(x),0,3); abline(h=0)

Thus we search for roots between 1.5 and 2.5. (See Figure 5.3)
> options(digits=3)

> multiroot(fs, c(1.5,2.5))

$root

[1] 1.76 2.22

$f.root

[1] 1.79e-09 6.45e-07

$iter

[1] 5

$estim.precis

[1] 3.24e-07

This confirms the common estimate that about 7/8 of the height of an iceberg is under
water.

Next we consider the set of two simultaneous equations

10x1 + 3x2
2−3 = 0

x2
1− ex2 −2 = 0 (5.5)

SYSTEMS OF NONLINEAR EQUATIONS 111

We first use multiroot without an explicit Jacobian, so that the function does
the Jacobian calculation internally.

> require(rootSolve)

> model = function(x) c(F1 = 10*x[1]+3*x[2]^2-3,

F2 = x[1]^2 -exp(x[2]) -2)

> (ss = multiroot(model,c(1,1)))

$root

[1] -1.445552 -2.412158

$f.root

F1 F2

5.117684e-12 -6.084022e-14

$iter [1] 10

$estim.precis

[1] 2.589262e-12

Providing an analytical Jacobian may provide a more quickly converging solu-
tion, but not always, as seen here.
> model = function(x) c(F1 = 10*x[1]+3*x[2]^2-3,

F2 = x[1]^2 -exp(x[2]) -2)

> derivs = function(x) matrix(c(10,6*x[2],2*x[1],

-exp(x[2])),nrow=2,byrow=T)

> (ssJ = multiroot(model,c(0,0),jacfunc = derivs))

$root

[1] -1.445552 -2.412158

$f.root

1.166651e-09 -1.390243e-11

$iter [1] 29

$estim.precis

[1] 5.902766e-10

The help page explains how various convergence tolerances may be adjusted if the
defaults are inadequate.

The rootSolve package has a variety of related functions, largely devoted to
obtaining steady-state solutions to systems of ordinary and partial differential equa-
tions. We shall return to it later in this book. The package vignette at http://cran.r-
project.org/web/packages/rootSolve/vignettes/ rootSolve.pdf is a valuable resource
and should be consulted for more information.

5.9.2 nleqslv

Another nonlinear equation solver is nleqslv in the package of the same name. The
package description states “Solve a system of non linear equations using a Broyden
or a Newton method with a choice of global strategies such as linesearch and trust
region. There are options for using a numerical or an analytical Jacobian and fixed
or automatic scaling of parameters.”

112 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

After installing the package with install.packages("nleqslv"), we load it
and apply it to the same function we used with multiroot:
> install.packages("nleqslv")

> require(nleqslv)

> model = function(x) {

+ y = numeric(2)

+ y[1] = 10*x[1]+3*x[2]^2-3

+ y[2] = x[1]^2 -exp(x[2]) -2

+ y

+ }

> (ss = nleqslv(c(1,1), model))

$x

[1] -1.445552 -2.412158

$fvec

[1] 3.592504e-11 -1.544165e-11

$termcd

[1] 1

$message

[1] "Function criterion near zero"

$scalex

[1] 1 1

$nfcnt

[1] 22

$njcnt

[1] 1

$iter

[1] 18

Consult the help page for nleqslv to learn about its numerous options and to
see more examples.

5.9.3 BBsolve() in the BB package

The third solver we shall discuss in this section is BBsolve in the BB package. Ac-
cording to the BB tutorial, accessed from R with vignette("BB"),

“ ‘BB’ is a package intended for two purposes: (1) for solving a nonlinear
system of equations, and (2) for finding a local optimum (can be minimum or
maximum) of a scalar, objective function. An attractive feature of the package

SYSTEMS OF NONLINEAR EQUATIONS 113

is that it has minimum memory requirements. Therefore, it is particularly well
suited to solving high-dimensional problems with tens of thousands of param-
eters. However, BB can also be used to solve a single nonlinear equation or
optimize a function with just one variable.”
The vignette also includes an explanation of the underlying approach, with refer-

ences.
In this chapter we shall deal with purpose (1), deferring purpose (2) to the Opti-

mization chapter. BB has two basic functions for solving nonlinear systems of equa-
tions: sane() (spectral approach for nonlinear equations) and dfsane() (derivative-
free spectral approach for nonlinear equations). sane() differs from dfsane() in
requiring an approximation of a directional derivative (gradient) at every iteration of
the merit function F(x)tF(x). The authors state that dfsane() tends to perform a bit
better than sane(), which is a bit surprising since the gradient gives the direction of
steepest descent to the minimum of the function. However, the reduced number of
function evaluations in dfsane() apparently outweighs this advantage.

We first run the dfsane() function in BB on the same model function we’ve
used for the other solvers.
> install.packages("BB")

> require(BB)

Loading required package: BB

Loading required package: quadprog

> model = function(x) c(F1 = 10*x[1]+3*x[2]^2-3,

+ F2 = x[1]^2 -exp(x[2]) -2)

> ans = dfsane(par=c(1,1), fn=model)

Iteration: 0 ||F(x0)||: 7.544058

iteration: 10 ||F(xn)|| = 2.564817

iteration: 20 ||F(xn)|| = 3.145361

iteration: 30 ||F(xn)|| = 2.421409

iteration: 40 ||F(xn)|| = 2.642886

iteration: 50 ||F(xn)|| = 2.115927

iteration: 60 ||F(xn)|| = 0.0463131

iteration: 70 ||F(xn)|| = 0.0001717358

> ans

$par

F1 F2

-1.445552 -2.412158

$residual

[1] 2.15111e-08

$fn.reduction

[1] 10.66891

$feval

[1] 103

114 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

$iter

[1] 74

$convergence

[1] 0

$message

[1] "Successful convergence"

BBsolve() is a wrapper around dfsane() that automatically uses sequential
strategies—detailed on its help page—in cases where there are difficulties with con-
vergence. With the BBsolve() wrapper:
> ans = BBsolve(par=c(1,1), fn=model)

Successful convergence.

> ans

$par

F1 F2

-1.445552 -2.412158

$residual

[1] 7.036056e-08

$fn.reduction

[1] 0.0048782

$feval

[1] 174

$iter

[1] 60

$convergence

[1] 0

$message

[1] "Successful convergence"

$cpar

method M NM

2 50 1

Here is an example where dfsane() doesn’t converge but BBsolve() does,
because it switches to a different method.

> froth = function(p){

+ f = rep(NA,length(p))

SYSTEMS OF NONLINEAR EQUATIONS 115

+ f[1] = -13 + p[1] + (p[2]*(5 - p[2]) - 2) * p[2]

+ f[2] = -29 + p[1] + (p[2]*(1 + p[2]) - 14) * p[2]

+ f

+ }

> p0 = c(3,2)

> BBsolve(par=p0, fn=froth)

Successful convergence.

$par

[1] 5 4

$residual

[1] 3.659749e-10

$fn.reduction

[1] 0.001827326

$feval

[1] 100

$iter

[1] 10

$convergence

[1] 0

$message

[1] "Successful convergence"

$cpar

method M NM

2 50 1

Compare this with
> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par

[1] -9.822061 -1.875381

$residual

[1] 11.63811

$fn.reduction

[1] 25.58882

$feval

[1] 137

116 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

$iter

[1] 114

$convergence

[1] 5

$message

[1] "Lack of improvement in objective function"

Here is an example from the BB vignette in which 10,000 simultaneous equa-
tions are solved, demonstrating BB’s impressive capability with large systems of
equations.
> trigexp = function(x) {

+ n = length(x)

+ F = rep(NA, n)

+ F[1] = 3*x[1]^2 + 2*x[2] - 5 + sin(x[1] - x[2]) * sin(x[1] + x[2])

+ tn1 = 2:(n-1)

+ F[tn1] = -x[tn1-1] * exp(x[tn1-1] - x[tn1]) + x[tn1] *

+ (4 + 3*x[tn1]^2) + 2 * x[tn1 + 1] + sin(x[tn1] -

+ x[tn1 + 1]) * sin(x[tn1] + x[tn1 + 1]) - 8

+ F[n] = -x[n-1] * exp(x[n-1] - x[n]) + 4*x[n] - 3

+ F

+ }

>

> n = 10000

> p0 = runif(n) # n initial random starting guesses

> ans = dfsane(par=p0, fn=trigexp, control=list(trace=FALSE))

> ans$message

[1] "Successful convergence"

> ans$resid

[1] 9.829212e-08

> ans$par[1:10] # Just the first 10 out of 10,000 solution values

[1] 1 1 1 1 1 1 1 1 1 1

The highest-order wrapper function in BB is multiStart(), which is useful if
the system of equations has multiple roots or optima. multiStart() accepts a ma-
trix of starting values, with as many columns as there are variables, and as many
rows as there are trials. Here is an example taken from the BB vignette, with three
variables and 300 trials, and with starting values taken from a uniform random dis-
tribution. Note that we did not set a random seed as in the example, so the number
of converged trials sum(ans$conv) (294/300) is different from that in the example
(287/300, but the 12 non-duplicated solutions are exactly the same, though in slightly
different order. In the command ans = multiStart(), action = "solve" tells
multiStart to solve rather than optimize. quiet = T suppresses the output of suc-
cesses and failures for all 300 attempts, albeit at the cost of having the computer

CASE STUDIES 117

appear to do nothing while going through the attempts, which may take a minute or
so.
> hdp = function(x) {

+ r = rep(NA, length(x))

+ r[1] = 5 * x[1]^9 - 6 * x[1]^5 * x[2]^2 + x[1] * x[2]^4 + 2 * x[1] * x[3]

+ r[2] = -2 * x[1]^6 * x[2] + 2 * x[1]^2 * x[2]^3 + 2 * x[2] * x[3]

+ r[3] = x[1]^2 + x[2]^2 - 0.265625

+ r

+ }

>

> p0 = matrix(runif(900), 300, 3)

> ans = multiStart(par = p0, fn = hdp, action = "solve", quiet=T)

> sum(ans$conv)

[1] 294

> pmat = ans$par[ans$conv,]

> ord1 = order(pmat[, 1])

> ans = round(pmat[ord1,], 4)

> ans[!duplicated(ans),]

[,1] [,2] [,3]

[1,] -0.5154 0.0000 -0.0124

[2,] -0.4670 -0.2181 0.0000

[3,] -0.4670 0.2181 0.0000

[4,] -0.2799 0.4328 -0.0142

[5,] -0.2799 -0.4328 -0.0142

[6,] 0.0000 0.5154 0.0000

[7,] 0.0000 -0.5154 0.0000

[8,] 0.2799 0.4328 -0.0142

[9,] 0.2799 -0.4328 -0.0142

[10,] 0.4670 -0.2181 0.0000

[11,] 0.4670 0.2181 0.0000

[12,] 0.5154 0.0000 -0.0124

Tests reported on R-help show that BB appears to be considerably more efficient
than nleqslv, as problems get larger, because of its low memory and storage re-
quirements.

5.10 Case studies

5.10.1 Spectroscopic analysis of a mixture

As a practical example of solving a system of linear equations, we consider a calcula-
tion that arises frequently in chemistry and biochemistry: determining the concentra-
tions of components in a mixture from their absorption spectra. The molar extinction
coefficients of organic molecules are often well represented as Gaussian functions of
wavelength x, with maximum at wavelength x0, standard deviation sig, and integrated
intensity I:
> gauss = function(I,x0,sig,x) {I/(sqrt(2*pi)*sig)*

exp(-(x-x0)^2/(2*sig^2))}

We assign these parameters to each of four mixture components, choosing values
typical of common biochemical molecules:
> A1 = function(x) gauss(6000,230,10,x)

118 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

> A2 = function(x) gauss(4500,260,15,x)

> A3 = function(x) gauss(3000,280,11,x)

> A4 = function(x) gauss(5700,320,20,x)

so that, for example, A1(x) will generate the spectrum of compound 1 as x is varied.
Let the four compounds be present at concentrations of 7, 5, 8, and 2 millimolar,
respectively.

At each wavelength, the optical density (OD) of the mixture is the sum of the ex-
tinction coefficient at that wavelength multiplied by the concentration of each com-
ponent:

OD(x) = ∑
i

Ai(x)Ci (5.6)

In other words, OD(x) is the dot product of the vector A(x) with the vector C, which
in R notation is written A%*%C.

If we know the concentrations (ultimately we will pretend we do not know them
and will solve for them) we can calculate and plot the spectrum of the mixture as
follows:
> x = 180:400 # Plot spectrum between 180 nm and 400 nm

> A = matrix(nrow = length(x), ncol = 4) # Initialize A matrix

> # Calculate Ais at each wavelength

> for (i in 1:length(x)) {

+ xi = x[i]

+ for (j in 1:4){

+ A[i,1] = A1(xi)

+ A[i,2] = A2(xi)

+ A[i,3] = A3(xi)

+ A[i,4] = A4(xi)

+ }

+ }

> conc = c(7,5,8,2)*1e-3 # Vector of concs (molar)

> OD = A%*%conc # Multiply A matrix into conc vector

> plot(x, OD, type="l")

Not knowing the concentrations and wishing to determine them, a chemist would
choose at least four wavelengths at which to measure the OD. For example,
> x.meas = c(220,250,280,310)

We calculate the extinction coefficient matrix for the four compounds at the four
wavelengths (Figure 5.4):
> A.meas = matrix(nrow = length(x.meas), ncol = 4)

> for (i in 1:length(x.meas)) {

+ A.meas[i,1] = A1(x.meas[i])

+ A.meas[i,2] = A2(x.meas[i])

+ A.meas[i,3] = A3(x.meas[i])

+ A.meas[i,4] = A4(x.meas[i])

+ }

CASE STUDIES 119

200 250 300 350 400

0.
0

0.
5

1.
0

1.
5

x

O
D

Figure 5.4: Simulated spectrum of 4-component mixture.

> conc = c(7,5,8,2)*1e-3

With these parameters, the measured ODs will be
> OD = A.meas %*% conc

> round(OD,3)

[,1]

[1,] 1.033

[2,] 0.728

[3,] 1.147

[4,] 0.224

Then the concentrations (which we pretend we don’t know) are calculated as
> solve(A.meas,OD)

[,1]

[1,] 0.007

[2,] 0.005

[3,] 0.008

[4,] 0.002

recovering the input values.
The chemist would very likely measure the OD at more than four wavelengths.

This would lead to an overdetermined system (see below), but still produce the cor-
rect results. For example, with measurements at six wavelengths, the A matrix is not
square, so solve() will give an error; but qr.solve() will give what we want,
returning a solution in the least-squares sense. For example,
> x.meas = c(220,250,265,280,300,310) # 6 measured wavelengths

> A.meas = matrix(nrow = length(x.meas), ncol = 4)

> for (i in 1:length(x.meas)) {

+ A.meas[i,1] = A1(x.meas[i])

+ A.meas[i,2] = A2(x.meas[i])

+ A.meas[i,3] = A3(x.meas[i])

+ A.meas[i,4] = A4(x.meas[i])

120 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

+ }

> OD = A.meas %*% conc

> round(OD,3)

[,1]

[1,] 1.033

[2,] 0.728

[3,] 0.918

[4,] 1.147

[5,] 0.322

[6,] 0.224

> qr.solve(A.meas,OD)

[,1]

[1,] 0.007

[2,] 0.005

[3,] 0.008

[4,] 0.002

again recovering the “unknown” concentrations.
Measurements at less than four wavelengths, however, will give an underdeter-

mined system (e.g., three equations in four unknowns). qr.solve() will still return
an answer, but one of the vector components will be zero, and the others will not be
correct.

5.10.2 van der Waals equation

Probably every physical scientist has learned about the van der Waals equation(
P +

nsa
V 2

)
(V −nb) = nRT, (5.7)

an equation of state for a gas that goes beyond the ideal gas law to take into ac-
count the intermolecular attractions and repulsions that occur in real gases. In this
equation, P, V , and T are the pressure, volume, and Kelvin temperature, n is the
number of moles of gas, a takes account of pairwise attractive interactions between
the molecules that reduce the pressure, and b represents the excluded volume of a
mole of molecules.

The van der Waals equation of state can be expressed in terms of reduced vari-
ables

Pr =
P
Pc
, Vr =

V
Vc

, Tr =
T
Tc

(5.8)

where Pc is the critical pressure, Tc the critical temperature, and Vc the molar volume
at the critical point (Pc,Tc):

Pc =
a′

27b′2
, Vc = 3b′, kBTc =

8a′

27b′
(5.9)

where a′ and b′ are the molecular values of the molar parameters a and b, and kB is
the Boltzmann constant R/NA where NA is Avogadro’s number.

CASE STUDIES 121

The result of these substitutions is(
Pr +

3
V 2

r

)(
Vr−

1
3

)
=

8
3

Tr, (5.10)

an equation that holds for all gases when expressed in terms of reduced variables.
With some algebraic manipulation we can write Equation 5.10 as a cubic equa-

tion in the reduced volume:

V 3
r −

1
3

(
1 +

8Tr

Pr

)
V 2

r +
3
Pr

Vr−
1
Pr

= 0 (5.11)

We now use R’s polyroot() function to solve for the real roots of this equation
to construct a plot of Vr as a function of Pr at a given Tr that shows the special
behavior of a van der Waals gas near its critical point. First we look at just a single
point to understand the nature of the roots.
> Tr = 0.95

> Pr = 1.5

> # Write expressions for the coefficients in the cubic

> c0 = -1/Pr

> c1 = 3/Pr

> c2 = -1/3*(1+8*Tr/Pr)

> c3 = 1

> (prc = polyroot(c(c0,c1,c2,c3)))

[1] 0.5677520-0.0000000i 0.7272351+0.8033372i 0.7272351-0.8033372i

We see that there are three roots, as there should be for a cubic equation. It’s the
one with imaginary part equal to zero that we want, so our code has to have a way
to pick that root. Since the roots are calculated numerically, the logical testIm(prc)
== 0 will likely fail. Also, it is found that the test all.equal(Im(prc),0) some-
times failed, suggesting that although the imaginary part of the root is displayed as
0 to seven decimal places, it may be larger than {Machine\$double.eps ^ 0.5,
the test that all.equal() uses. Therefore, we use abs(Im(prc)) <= 1e-12 as a
heuristic test for a zero imaginary part, with the confidence that only one of the three
roots would pass the test. These considerations lead to the following code.

> Tr = 0.95 # Temperature below the critical point

> pr = seq(0.5,3,by = 0.01) # From relatively dilute to compressed

> npr = length(pr)

> Vr = numeric(npr)

> for(i in 1:npr) {

+ Pr = pr[i]

+ c0 = -1/Pr

+ c1 = 3/Pr

+ c2 = -1/3*(1+8*Tr/Pr)

+ c3 = 1

+ prc = polyroot(c(c0,c1,c2,c3))

+ for (j in 1:3) if (abs(Im(prc[j])) <= 1e-12) Vr[i] = Re(prc[j])

+ }

122 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

0 1 2 3 4

0.
0

1.
0

2.
0

3.
0

Vr

P
r

Figure 5.5: Plots of reduced pressure vs. reduced volume below (points) and above (line) the
critical temperature.

It is conventional to plot pressure as a function of volume:
> plot(Vr,pr,xlim=c(0,max(Vr)),ylim=c(0,max(pr)), cex = 0.3,ylab="Pr")

For comparison, we do the same calculation for a reduced temperature well above
critical, and add that (V,P) line to the plot (Figure 5.5).
> Tr = 1.5

> pr = seq(0.5,3,0.01)

> npr = length(pr)

> Vr = numeric(npr)

> for(i in 1:npr) {

+ Pr = pr[i]

+ c0 = -1/Pr

+ c1 = 3/Pr

+ c2 = -1/3*(1+8*Tr/Pr)

+ c3 = 1

+ prc = polyroot(c(c0,c1,c2,c3))

+ for (j in 1:3) if (abs(Im(prc[j])) <= 1e-12) Vr[i] = Re(prc[j])

+ }

> lines(Vr,pr)

We see that if the temperature is below critical, the PV curve of the van der Waals
gas shows a discontinuity near the critical point, corresponding to the transition from
gas to liquid. If the temperature is above critical, the familiar Boyle’s law curve is
observed.

5.10.3 Chemical equilibrium

Consider the system of chemical reactions that occur when 3 moles of hydrogen
gas and 1 mole of carbon monoxide react in the presence of solid carbon to form
methane, water, carbon dioxide, and ethane (Hanna and Sandall, 1995, p. 170).
1. 3H2 + CO = CH4 + H2O
2. CO + H2O = CO2 + H2

CASE STUDIES 123

3. CO2 + C = 2CO
4. 5H2 + 2CO = C2H6 + 2H2O
At one atm total pressure and 500 K, the equilibrium constants KX on a mole fraction
basis are 69.18, 4.68, 0.0056, and 0.141, respectively.

We wish to solve for the composition of the equilibrium mixture. There are six
chemical species (plus solid carbon, which does not contribute to the gaseous mole
fractions) and only four equilibrium constants, so some other constraints are needed.
Hanna and Sandall use the “reaction coordinate” formulation of Smith and Van Ness
(1987). The species H, CO, CH4, H2O, CO2, and C2H6 are numbered 1–6, and the
reaction coordinates are numbered r1, r2, r3, r4 for reactions 1–4. The equilibrium
mole fractions Xi can then be expressed in terms of the reaction coordinates as

X1 = (3−3r1 + r2−5r4)/ntot
X2 = (1− r1− r2 + 2r3−2r4)/ntot
X3 = r1/ntot
X4 = (r1− r2 + 2r4)/ntot
X5 = (r2− r3)/ntot
X6 = r4/ntot

(5.12)

where ntot is the total number of moles of gas at equilibrium,

ntot = 4−2r1 + r3−4r4. (5.13)

Substituting these equations into the equilibrium constant expressions, we obtain

r1(r1−r2+2r4)n2
tot

(3−3r1+r2−5r4)(1−r1−r2+2r3−2r4) = 69.18

(r2−r3)(3−3r1+r2−5r4)
(1−r1−r2+2r3−2r4)(r1−r2+2r4) = 4.68

(1−r1−r2+2r3−2r4)2

(r2−r3)ntot
= 0.0056

r4(1−r1−r2+2r3−2r4)2n4
tot

(3−3r1+r2−5r4)5(1−r1−r2+2r3−2r4) = 0.141

(5.14)

We need to solve these equations for the ri, and use the results in Equations
5.12 to calculate the equilibrium mole fractions. As they stand, Equations 5.14 are
very difficult to solve numerically with any of the functions we have examined in
this chapter, unless the starting guesses are unrealistically close to the true values.
However, if the denominators are cleared, the difficulties largely disappear. Thus we
use the following code to solve for the reaction coordinate values at equilibrium,
choosing nleqslv as our solver.

> require(nleqslv)

> model = function(r) {

+ FX = numeric(4)

+ r1 = r[1]; r2 = r[2]; r3 = r[3]; r4 = r[4]

124 SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS

+ ntot = 4-2*r1+r3-4*r4

+ FX[1] = r1*(r1-r2+2*r4)*ntot^2-69.18*(3-3*r1+r2-5*r4)^3*

(1-r1-r2+2*r3-2*r4)

+ FX[2] = (r2-r3)*(3-3*r1+r2-5*r4)-4.68*(1-r1-r2+2*r3-2*r4)*

(r1-r2+2*r4)

+ FX[3] = (1-r1-r2+2*r3-2*r4)^2-0.0056*(r2-r3)*ntot

+ FX[4] = r4*(r1-r2+2*r4)^2*ntot^4-0.141*(3-3*r1+r2-5*r4)^5*

(1-r1-r2+2*r3-2*r4)^2

+ FX

+ }

> # For initial guess, set all r equal

> (ss = nleqslv(c(.25,.25,.25,.25), model))

$x

[1] 6.816039e-01 1.589615e-02 -1.287031e-01 1.409549e-05

$fvec

[1] 1.015055e-08 -3.922078e-10 6.236144e-12 -9.467267e-09

$termcd

[1] 2

$message

[1] "x-values within tolerance ‘xtol’"

$scalex

[1] 1 1 1 1

$nfcnt

[1] 78

$njcnt

[1] 2

$iter

[1] 63

Note that the equilibrium value for r3 is negative, as it should be since solid carbon
is consumed in the reaction.

We now set the r vector equal to the results ss$x and calculate the equilibrium
mole fractions.
> r = ss$x

> ntot = 4-2*r[1]+r[3]-4*r[4]

> X = numeric(6)

> X[1] = (3-3*r[1]+r[2]-5*r[4])/ntot

> X[2] = (1-r[1]-r[2]+2*r[3]-2*r[4])/ntot

> X[3] = r[1]/ntot

> X[4] = (r[1] - r[2] + 2*r[4])/ntot

> X[5] = (r[2] - r[3])/ntot

> X[6] = r[4]/ntot

> X

[1] 3.871616e-01 1.796845e-02 2.717684e-01 2.654415e-01

[5] 5.765447e-02 5.620138e-06

Chapter 6

Numerical differentiation and
integration

6.1 Numerical differentiation

6.1.1 Numerical differentiation using base R

6.1.1.1 Using the fundamental definition

Calculating numerical derivatives is straightforward using a finite difference version
of the fundamental definition of a derivative:

d f (x)
dx

= lim
h→0

f (x + h)− f (x)
h

(6.1)

For example,
> f = function(x) x^3 * sin(x/3) * log(sqrt(x))

> x0 = 1; h = 1e-5

> (f(x0+h) - f(x0))/h

[1] 0.163603

while the true value of the derivative is 1
2 sin(1

3) = 0.163597348398076 . . .
With h positive, this is called the forward derivative, otherwise it is the backward

derivative. To take into account the slopes both before and after the point x, the central
difference formula is chosen,

d f (x)
dx

= lim
h→0

f (x + h)− f (x−h)
2h

(6.2)

which is also numerically more accurate, with error O(h2) as h gets small:
> (f(x0+h) - f(x0-h))/(2*h)

[1] 0.1635973

It might be tempting, therefore, to make h as small as possible, e.g., as small as the
machine accuracy eps = .Machinedouble.eps of about 2.2×10−16, to minimize
the error in the derivative. However, as the following numerical experiment shows,
this strategy fails. Choose h to be 10−i for i in 1 . . .16 and plot the error as a function
of i (Figure 6.1).

125

126 NUMERICAL DIFFERENTIATION AND INTEGRATION

5 10 15

-1
0

-8
-6

-4
-2

-log10(h)

lo
g1
0(
er
r)

Figure 6.1: Error in numerical differentiation of f as function of h.

> f = function(x) x^3 * sin(x/3) * log(sqrt(x))

> x0 = 1

> err = numeric(16)

> for (i in 1:16) {

+ h = 10^-i

+ err[i] = abs((f(x0+h)-f(x0-h))/(2*h) - 0.5*sin(1/3))

+ }

> plot(log10(err), type="b", xlab="-log10(h)")

The difference between the numerical and the exact derivative is smallest for
h = 10−6 with error 10−11, and increases again when h gets smaller. The reason is
that, while the roundoff error between the computed derivative and its actual value
gets smaller, the truncation error in the term f (x+h)− f (x−h) increases with smaller
h.

Theory says that the optimal step size is 3
√

a if a is the accuracy with which
the function can be computed, and 3√a2 would be the accuracy of the computed
derivative. Assuming that all basic math functions in R are calculated with accuracy
eps, this corresponds quite well with the optimal size of h as found in the figure
above.

6.1.1.2 diff()

diff() in base R is not a derivative function, but rather a function that returns lagged
differences between entries in a vector. For central estimation use lag = 2. For ex-
ample
> xfun = function(x0,h) seq(x0-h,x0+h,h)

> diff(f(xfun(x0,h)), lag = 2)/(2*h)

[1] 0.163597

NUMERICAL DIFFERENTIATION 127

6.1.2 Numerical differentiation using the numDeriv package

The standard R package for calculating numerical approximations to derivatives is
numDeriv. It is used, for example, in all the standard optimization packages dis-
cussed in the next chapter. numDeriv contains functions to accurately calculate first
derivatives (gradients and Jacobians) and second derivatives (Hessians). In searching
for an optimum of a multivariate function, the gradient gives the direction of steepest
descent (or ascent) and the Hessian gives the local curvature of the surface.

The usage for each of these functions is
dfun(func, x, method, method.args, ...)

where dfun is one of grad, jacobian, or hessian, func is the function to be
differentiated, method is one of "Richardson" (the default), "simple" (not sup-
ported for hessian), or "complex", indicating the method to be used for the ap-
proximation. method.args are the arguments—tolerances, number of repetitions,
etc.—passed to the method (see the help page for grad for the most complete dis-
cussion of the details), and ... stands for any additional arguments to be passed to
func. In the examples following, we will use the defaults.

With method="simple", these functions calculate forward derivatives with step
size 10−4, both choices that we already know are not optimal. Applying this method
to the function above yields
> require(numDeriv)

> options(digits=16)

> grad(f, 1, method = simple)

[1] 0.1636540038633105 # error: 5.7e-5

With the default method="Richardson", Richardson’s extrapolation scheme is
applied, a method for accelerating a sequence of related computations. The help page
says: “This method should be used if accuracy, as opposed to speed, is important.”
> grad(f, 1, method = "Richardson")

[1] 0.1635973483989158 # error: 8.4e-13

Method "complex" refers to the quite recent complex-step derivative approach
and can be applied to complex-differentiable (i.e., analytic) functions that satisfy
the conditions that x0 and f (x0) are real. Then the complex step method computes
derivatives to the same accuracy as the function itself. Almost all special functions
available in R are complex-differentiable. Therefore, this method can be applied to
the function above, returning the derivative to 16 digits, and with no loss in speed
compared to method "simple":
> grad(f, 1, method = "complex")

[1] 0.1635973483980761 # error: < 1e-15

One has to be careful with self-defined functions. Normally, the complex-step
approach only works for functions composed of basic special functions defined in R.

128 NUMERICAL DIFFERENTIATION AND INTEGRATION

6.1.2.1 grad()

To illustrate the use of grad() for multivariate functions, we consider the scalar
function of three variables

f (x,y,z) = 2x + 3y2− sin(z). (6.3)

The gradient, as commonly defined in Cartesian coordinates, is the vector

5 f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂ z

k (6.4)

where i, j,k are unit vectors along the x,y,z axes. For the function f defined in Equa-
tion 6.3, the gradient is therefore

5 f = 2i + 6yj− cos(z)k (6.5)

We obtain the same result for particular numerical values of x,y,z = c(1,1,0) using
the grad() function as follows.
> require(numDeriv)

> f = function(u){

+ x = u[1]; y = u[2]; z = u[3]

+ return(2*x + 3*y^2 - sin(z))

+ }

> grad(f,c(1,1,0))

[1] 2 6 -1

6.1.2.2 jacobian()

The Jacobian matrix J of a vector function F(x) is the matrix of all first-order partial
derivatives of F with respect to the components of x. For a 2×2 system,

J =

(
∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)
(6.6)

With the function

F = x2
1 + 2x2

2−3,cos(πx1/2)−5x3
2, (6.7)

we find that

J =
(

2x1 4x2
−π

2 sin πx1
2 −15x2

)
(6.8)

Using the jacobian() function, we find numerical agreement with that result at the
point c(2,1:
> require(numDeriv)

> F = function(x) c(x[1]^2 + 2*x[2]^2 - 3, cos(pi*x[1]/2) -5*x[2]^3)

> jacobian(F, c(2,1))

[,1] [,2]

[1,] 4 4

[2,] 0 -15

NUMERICAL DIFFERENTIATION 129

6.1.2.3 hessian

The hessian is the matrix of second derivatives of a scalar function f with respect to
coordinate components. It may be thought of as the jacobian of the gradient of the
function. It gives the coefficients of the quadratic term of the Taylor series expansion
of a function at the point in question. For a two-dimensional system,

H(f) =

 ∂
2 f

∂x2
1

∂
2 f

∂x1∂x2

∂
2 f

∂x2∂x1

∂
2 f

∂x2
2

 (6.9)

For the function f defined in the subsection on grad above, we find
> hessian(f,c(1,1,0))

[,1] [,2] [,3]

[1,] 0.000000e+00 -4.101521e-12 0.000000e+00

[2,] -4.101521e-12 6.000000e+00 -4.081342e-13

[3,] 0.000000e+00 -4.081342e-13 0.000000e+00

> zapsmall(hessian(f,c(1,1,0)))

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 6 0

[3,] 0 0 0

That is, as can be seen by inspection of Equation 6.5, all entries in the hessian matrix
for f at the given point are 0 except for the [2,2] entry.

6.1.3 Numerical differentiation using the pracma package

The pracma package contains a variety of functions for both scalar and vector nu-
merical differentiation. It has functions with the same names and roles as grad(),
jacobian(), and hessian() in the numDeriv package, and in fact will mask those
functions if it is loaded after numDeriv:
> require(numDeriv)

> require(pracma)

Loading required package: pracma

Attaching package: pracma

The following object(s) are masked from package:numDeriv:

grad, hessian, jacobian

Which package one uses for these functions is largely a matter of choice, though
those in numDeriv are probably more solid under a wider variety of circumstances.
However, pracma is sometimes more accurate, as it uses the central difference for-
mula plus an optimal step size. It also has some additional useful functions.

6.1.3.1 fderiv()

The fderiv() function enables numerical differentiation of functions from first to
higher orders. Note that numerical derivatives get less accurate, the higher the order;

130 NUMERICAL DIFFERENTIATION AND INTEGRATION

but derivatives up to the eighth order seem to be possible without problems. To obtain
the nth derivative of a function f at a vector of points x, the usage with defaults is
fderiv(f, x, n = 1, h = 0, method="central", ...)

where h is the step size, set automatically if h = 0. Optimal step sizes for various
orders of derivative are given in the help page. The central method should be used
unless the function can be evaluated only on the right side (forward) or the left side
(backward). As usual, . . . stands for additional variables to be passed to f. An exam-
ple of usage:
> require(pracma)

> f = function(x) x^3 * sin(x/3) * log(sqrt(x))

> x = 1:4

> fderiv(f,x) # 1st derivative at 4 points

[1] 0.1635973 4.5347814 18.9378217 43.5914029

> fderiv(f,x,n=2,h=1e-5) # 2nd derivative at 4 points

[1] 1.132972 8.699867 20.207551 27.569698

6.1.3.2 numderiv() and numdiff()

The pracma function numderiv() (not to be confused with the numDeriv package
discussed above) implements Richardson’s extrapolation method—a sequence accel-
eration method—to compute the numerical derivative at a single point, returning not
only the value of the derivative, but also estimated absolute and relative errors and
the number of iterations used.
> options(digits = 12)

> numderiv(f, x0=1, h=1/2)

$df

[1] 0.163597348398 # error: 1.859624e-15

$err

[1] 7.72992780895e-14

$relerr

[1] 4.72497133031e-13

$n

[1] 6

and we see that this returns two correct digits more than grad in the numderiv

package. (Starting with the default h = 1 will lead to an error because the function f
does not exist in x0−h = 0.)

numderiv() is not vectorized, i.e., x0 must be a scalar, a single numerical value.
To evaluate the derivative at a vector of points, use numdiff(), a function that simply
wraps numderiv(). To evaluate the derivative at a vector of points, use numdiff.
> numdiff(f,x=2:4)

[1] 4.53478137145 18.93782173965 43.59140287422

NUMERICAL DIFFERENTIATION 131

6.1.3.3 grad() and gradient()

The pracma package has two functions for calculating gradients: grad() and
gradient(). grad() calculates a numerical gradient at a single point x0, given a
function f of several variables, and an optimal step size h. In essence, grad() ap-
plies the central difference formula to each direction xi.

For example, to calculate the electric field (the negative gradient of the potential)
at x0 = (1,1,1) due to a unit charge at the origin, we proceed as follows.
> options(digits = 3)

> f = function(x) 1/sqrt(x[1]^2 + x[2]^2 + x[3]^2)

> x0 = c(1,1,1)

> -grad(f,x0)

[1] 0.192 0.192 0.192

The gradient() function takes as arguments a vector of function values or a
matrix of values of a function of two variables, and x- and y-coordinates of grid
points or values for the differences between grid points in the x and y directions, and
returns the numerical gradient as a vector or matrix of discrete slopes in the x and y
directions.

As an example of this useful capability of gradient(), we calculate and plot the
two-dimensional electric field (the gradient of the potential) due to a dipole with unit
positive charge at (-1,0) and unit negative charge at (1,0), on a square grid of points
spaced 0.2 units apart (Figure 6.2)

> require(pracma)

> # Define the grid

> v = seq(-2, 2, by=0.2)

> X = meshgrid(v, v)$X

> Y = meshgrid(v, v)$Y

> # Define the potential Z

> Z = -(1/sqrt((X+1)^2 + Y^2) - 1/sqrt((X-1)^2 + Y^2))

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> contour(v, v, t(Z), col="black",xlab="x",ylab="y")

> grid(col="white")

> # Calculate the gradient on the grid points

> grX = gradient(Z, v, v)$X

> grY = gradient(Z, v, v)$Y

> # Draw arrows representing the field strength at the grid

points

> quiver(X, Y, grX, grY, scale = 0.2, col="black")

6.1.3.4 jacobian()

As noted in the numDeriv section, the Jacobian matrix is the matrix of first deriva-
tives of the components of one vector x with respect to the components of another
vector y: ∂xi/∂y j. The determinant of this matrix is used as a multiplicative factor
when changing variables from x to y when integrating a function over a region within

132 NUMERICAL DIFFERENTIATION AND INTEGRATION

x

y

-2 -1 0 1 2

-2
-1

0
1

2

Figure 6.2: Electric field of a dipole, plotted using the quiver function.

its domain. Here is an example of the Jacobian in transforming from spherical polar
to Cartesian coordinates:
> f = function(x) {

+ r = x[1]; theta = x[2]; phi = x[3];

+ return(c(r*sin(theta)*sin(phi), r*sin(theta)*cos(phi),

+ r*cos (theta)))

+ }

> x = c(2, 90*pi/180, 45*pi/180)

> options(digits=4)

> jacobian(f,x)

[,1] [,2] [,3]

[1,] 7.071e-01 0 1.414

[2,] 7.071e-01 0 -1.414

[3,] 6.123e-17 -2 0.000

This matrix accords with the analytical result.

6.1.3.5 hessian

The hessian() function in pracma behaves just as it does in numDeriv. Here is an
example from the help page for hessian() in the pracma package.
> f = function(u) {

+ x = u[1]; y <- u[2]; z <- u[3]

+ return(x^3 + y^2 + z^2 +12*x*y + 2*z)

+ }

> x0 = c(1,1,1) # Point at which the hessian is calculated

> hessian(f, x0)

[,1] [,2] [,3]

[1,] 6 12 0

[2,] 12 2 0

[3,] 0 0 2

NUMERICAL INTEGRATION 133

hessian() functions are provided in many R packages. For example, one is
included in the rootSolve package, where it is used in the context of solving differ-
ential equations. However, for stand-alone purposes, numDeriv or pracma are to be
preferred.

6.1.3.6 laplacian()

The Laplacian is a differential operator given by the divergence of the gradient of a
function, often denoted by∇2 or4. In Cartesian coordinates, the Laplacian is given
by the sum of second partial derivatives of the function with respect to x, y, and z.

∇2 f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 . (6.10)

pracma numerically calculates this quantity, in as many dimensions as desired, with
the laplacian()function. For example, in two dimensions:
> f = function(x) 2/x[1] - 1/x[2]^2

> laplacian(f, c(1,1))

[1] -2

6.2 Numerical integration

Numerical integration means the computation of an integral using numerical tech-
niques. This numerical computation of a univariate integral is also called “quadra-
ture” (and sometimes “cubature” to mean numerical computation of integrals in mul-
tidimensional space).

There is a wide range of approaches to numerical integration. Most scientists and
engineers are probably familiar with the trapezoidal or Simpson’s rules, which are
based on dividing the integration interval into sections of equal width and simple
shape (rectangle or trapezoid), calculating the area of each section, and summing the
results. These are the 2-point and 3-point versions of the so-called Newton–Cotes
formulae.

A more modern, and often more accurate, approach is some variant of Gaussian
quadrature, which divides the integral into unequally spaced points, assigns weights
to those points, and evaluates the integral as the product of the weight times the value
of the function at each point, summed over the points. The points are chosen in such
a way that the value of the integral will be exact for all polynomials up to a certain
degree.

Both of these approaches can be used for adaptive integration where the value
of the integral is approximated using one of these static rules on smaller and smaller
subintervals of the integration domain. The process is stopped on subintervals for
which an error estimate has fallen below a certain predefined tolerance.

Difficulties will arise with functions that have singularities in the integration do-
main or at the boundaries, domains that are unbounded (reach to infinity), or that
involve multivariate functions. Especially useful for higher-dimensional functions
are Monte Carlo integration and its variants.

134 NUMERICAL DIFFERENTIATION AND INTEGRATION

We proceed to show how each of these approaches is implemented in R, and
name packages that support numerical integration.

6.2.1 integrate: Basic integration in R

The main function for numerical integration is integrate() in base R. As an ex-
ample we will integrate the function f (x) = e−x cos(x) from 0 to π:

> f = function(x) exp(-x) * cos(x)

> (q = integrate(f, 0, pi))

0.521607 with absolute error < 7.6e-15

> str(q)

List of 5

$ value : num 0.522

$ abs.error : num 7.6e-15

$ subdivisions: int 1

$ message : chr "OK"

$ call : language integrate(f = f, lower = 0, upper = pi)

- attr(*, "class")= chr "integrate"

integrate() returns a list with entries $value for the approximate value of
the integral, and $abs.error the estimated absolute error. Because the known exact
value of the integral is 1

2 (1 + e−π) the true absolute error is:

> v = 0.5*(1+exp(-pi))

> abs(q$value - v)

[1] 1.110223e-16

The integrand function needs to be vectorized, otherwise one will get an error
message, e.g., with the following nonnegative function:

> f1 = function(x) max(0, x)

> integrate(f1, -1, 1)

Error in integrate(f1, -1, 1) :

evaluation of function gave a result of wrong length

The reason is that f(c(x1, x2, ...)) is max(0, x1, ...) and not
c(max(0, x1), max(0, x2), ...) as would be expected from a vectorized
function. In this case, the behavior of the function can be remedied by using the
pmax() function, which returns a vector of the maxima of the input values:

> f2 = function(x) pmax(0, x)

> integrate(f2, -1, 1)

0.5 with absolute error < 5.6e-15

In general, the help page suggests to vectorize the function by applying the
Vectorize() function to it.

NUMERICAL INTEGRATION 135

> f3 = Vectorize(f1)

> integrate(f3, -1, 1)

0.5 with absolute error < 5.6e-15

Sometimes, integrate() has difficulties with highly oscillating functions: one
then sees a message like “maximum number of subdivisions reached.” It may help to
increase the number of subdivisions, but that is not guaranteed to solve the problem.
It is sometimes recommended to set the number of subdivisions to 500 by default,
anyway.

Note that the true absolute error will not always be smaller than the estimated
one, there may be situations where the estimated absolute error will be misleadingly
small. Consider for example the following function

f (x) =
x1/3

1 + x
, (6.11)

which has ill-behaved derivatives at the origin.

> f = function(x) x^(1/3)/(1+x)

> curve(f,0,1)

> integrate(f,0,1)

0.4930535 with absolute error < 1.1e-09

Using integrate(), we get the same answer using x or the transformed variable
u = x3 in the integration, but with a considerably smaller estimated absolute error.

> # Now with transformed variable

> fu = function(u) 3*u^3/(1+u^3)

> integrate(fu,0,1)

0.4930535 with absolute error < 1.5e-13

Example — Consider the calculation of the mean-square radius of a sphere of
radius R and constant density:

< R2 >=
1

R2

∫ R
0 r4dr∫ R
0 r2dr

(6.12)

The integrals are trivial analytically, and lead to 3/5 as the answer. Numerically,

> f1 = function(r) r^2

> f2 = function(r) r^4

> f = function(R) integrate(f2,0,R)$value/

+ integrate(f1,0,R)$value/R^2

> f(1); f(10); f(100)

[1] 0.6

[1] 0.6

[1] 0.6

and we would get the same result for any value of R.
Example — The following exercise displays a combination of numerical differ-

entiation and integration techniques.

136 NUMERICAL DIFFERENTIATION AND INTEGRATION

Compute the surface area of rotating the curve sin(x) from 0 to 2π about the
x-axis. The formula for an area of surface from a to b of revolving a curve f is

Sx = 2π

∫ b

a
f (x)
√

1 + f ′(x)2 dx. (6.13)

Assuming we do not know the derivative of sin(x) we have to apply a numerical
gradient.

> library(numDeriv)

> fn = sin

> gr = function(x) grad(fn, x)

> F = function(x) fn(x) * sqrt(1 + gr(x)^2)

> (I = integrate(F, 0, pi))

2.295587 with absolute error < 2.1e-05

> S = 2*pi * I$value

> S

[1] 14.4236

with a theoretical value of 2π(
√

2 + arcsinh(1)) = 14.423599 . . . where arcsinh is the
inverse of the hyperbolic sine function (available in package pracma as asinh).

6.2.2 Integrating discretized functions

A different situation that will often arise is when the function is not explicitly known,
but is represented by a number of discrete points. Then one may imagine the function
as linear between these known points and the classical “trapezoidal rule” could be
applied. This rule is implemented in function trapz() in package pracma.

> require(pracma)

> f = function(x) exp(-x) * cos(x)

> xs = seq(0, pi, length.out = 101)

> ys = f(xs)

> trapz(xs, ys)

[1] 0.5216945

The help page reveals how this result can be slightly improved by correcting the
end terms.

> h = pi/100

> ya = (ys[2] - ys[1])

> ye = (ys[101] - ys[100])

> trapz(xs, ys) - h/12 * (ye - ya)

[1] 0.521607

with an absolute error smaller than 0.5e-07, a good result when considering that a
piecewise linear function between discrete points was assumed.

There is no straightforward implementation of Simpson’s rule available, but we
can easily write our own discrete version:

NUMERICAL INTEGRATION 137

> simpson = function(y, h) {

+ n = length(y)

+ if (n%%2 != 1) stop("Simpson’s rule needs an uneven number

of points.")

+ i1 = seq(2, n-1, by=2)

+ i2 = seq(3, n-2, by=2)

+ h/3 * (y[1] + y[n] + 4*sum(y[i1]) + 2*sum(y[i2]))

+ }

> simpson(ys, h)

[1] 0.521607

One may attempt to reconstruct the original function through an approximation of
the discrete points, for example a polynomial or spline approximation. splinefun()
will generate such a function.

> fsp = splinefun(xs, ys)

> integrate(fsp, 0, pi)

0.521607 with absolute error < 6.7e-10

The absolute error concerns the spline approximation, not necessarily the error
compared to the initial, unknown function from which the discrete points are derived.

Still another approach could be to approximate the points with a polynomial
which has the advantage that polynomials can be integrated easily. With pracma

we can do this as follows:

> require(pracma)

> p = polyfit(xs, ys, 6) # fitting polynomial

> q = polyint(p) # anti-derivative

> polyval(q, pi) - polyval(q, 0) # evaluate at endpoints

[1] 0.5216072

Which approach to use depends on the application, e.g., on possible oscillations
or smoothness assumptions about the underlying function.

6.2.3 Gaussian quadrature

The integrate() function in the base R installation is an example of the modern ap-
proach to numerical integration, which emphasizes the high accuracy and efficiency
of Gaussian integration methods. As stated above, Gaussian quadrature approximates
the integral by a sum of the function values f (xi), multiplied by appropriate weights
wi, evaluated at a set of n points xi:∫ b

a
f (x)dx≈

n

∑
i=1

wi f (xi). (6.14)

It can be shown that the optimal abscissas xi for a given n are the roots of the
orthogonal polynomial for the same integral and weighting function. The resulting

138 NUMERICAL DIFFERENTIATION AND INTEGRATION

approximation to the integral is then exact for polynomials of degree 2n−1 or less,
and highly accurate for functions that are well approximated by polynomials. In some
common cases, we have

W (x) interval polynomial
1 (−1,1) Legendre Pn(x)
(1− x2)−1/2 (−1,1) Chebyshev Tn(x)
(1− x2)1/2 (−1,1) Chebyshev Un(x)
e−x (0,∞) Laguerre Ln(x)
e−x2

(−∞,∞) Hermite Hn(x)

If the interval in the first three cases is (a,b) rather than (−1,1), the scaling trans-
formation ∫ b

a
f (x)dx =

b−a
2

∫ 1

−1
f (

b−a
2

x +
b−a

2
)dx (6.15)

accomplishes the change.
Package gaussquad encompasses a collection of functions for Gaussian quadra-

ture. For example, function legendre.quadrature.rules() will return the nodes
and weights for performing Gauss–Legendre quadrature on the interval [−1,1].

> library(gaussquad)

> legendre.quadrature.rules(4)

[[1]]

x w

1 0 2

[[2]]

x w

1 0.5773503 1

2 -0.5773503 1

[[3]]

x w

1 7.745967e-01 0.5555556

2 7.771561e-16 0.8888889

3 -7.745967e-01 0.5555556

[[4]]

x w

1 0.8611363 0.3478548

2 0.3399810 0.6521452

3 -0.3399810 0.6521452

4 -0.8611363 0.3478548

Compute the integral of f (x) = x6 on [−1,1] with Legendre nodes and weights of
order 4:

NUMERICAL INTEGRATION 139

> f = function(x) x^6

> Lq = legendre.quadrature.rules(4)[[4]] # Legendre of order 4

> xi = Lq$x; wi = Lq$w # nodes and weights

> sum(wi * f(xi)) # quadrature

[1] 0.2857143

and this is exactly 2/7, the value of integrating x6 from−1 to 1. One can also directly
calculate this integral with legendre.quadrature():

> legendre.quadrature(f, Lq, lower = -1, upper = 1)

[1] 0.2857143

In pracma there is a gaussLegendre() function available. It takes as argu-
ments the number of nodes and the limits of integration, and returns the positions
and weights at the nodes. We illustrate with examples from the help page of the
functions.

> f = function(x) sin(x+cos(10*exp(x))/3)

> curve(f, -1, 1)

Let us examine convergence with increasing number of nodes.

> nnodes = c(17,29,51,65)

> # Set up initial matrix of zeros for nodes and weights

> gLresult = matrix(rep(0, 2*length(nnodes)),ncol=2)

> for (i in 1:length(nnodes)) {

+ cc = gaussLegendre(nnodes[i],-1,1)

+ gLresult[i,1] = nnodes[i]

+ gLresult[i,2] = sum(cc$w * f(cc$x))

+ }

> gLresult

[,1] [,2]

[1,] 17 0.03164279

[2,] 29 0.03249163

[3,] 51 0.03250365

[4,] 65 0.03250365

> # Compare with integrate()

> integrate(f,-1,1)

0.03250365 with absolute error < 6.7e-07

We see that 51 nodes are enough to get a very precise result.
The pracma package has a number of other integration functions that implement

Gaussian quadrature or some variants of it, most notably quadgk() for adaptive
Gauss–Kronrod quadrature, and quadgr(), a Gaussian quadrature with Richardson
extrapolation.

In Gauss–Kronrod quadrature the evaluation points are chosen so that an accurate
approximation can be computed by reusing the information produced by the compu-
tation of a less accurate approximation. n+1 points are added to the n-point Gaussian
rule to get a rule of order 2n + 1. The difference between these approximations leads
to an estimate of the relative error.

140 NUMERICAL DIFFERENTIATION AND INTEGRATION

The adaptive version applies this procedure recursively on refined subintervals
of the integration interval, splitting the subinterval into smaller pieces if the relative
error is greater than a tolerance level, and returning and adding up integral values on
subintervals otherwise. Normally, Gauss–Kronrod works by comparing the n = 7 and
2n + 1 = 15 results.

Gauss–Kronrod quadrature is the basic step in integrate as well, combined
with an adaptive interval subdivision and Wynn’s “epsilon algorithm” for extrapola-
tion.

quadgk, like all other functions in pracma, is written in R rather than, like
integrate, in compiled C code. It therefore is slightly slower, but has the advantage
of being more stable with oscillating functions while reaching a better level of accu-
racy. As an example, we will integrate the highly oscillating function f (x) = sin(1

x)
on the intervall [0,1].

> require(pracma)

> f = function(x) sin(1/x)

> integrate(fun, 0, 1)

Error in integrate(fun, 0, 1) : maximum number of subdivisions reached

> integrate(fun, 0, 1, subdivisions=500)

0.5041151 with absolute error < 9.7e-05

> quadgk(fun, 0, 1)

[1] 0.5040670

with an absolute error of 1× 10−7. This accuracy will not be reached with
integrate(). There are more complicated examples, where integrate() does
not return a value while quadgk() does.

Therefore, the quadgk() function might be most efficient for high accuracies
and oscillatory integrands. It can handle moderate singularities at the endpoints, but
does not support infinite intervals.

6.2.4 More integration routines in pracma

There are some more integration routines in pracma that may be interesting to know
about. quad() is an adaptive version of Simpson’s rule that shows how much can be
gained with a relatively simple formula through an adaptive approach.

> require(pracma)

> options(digits = 10)

> f = function(x) x * cos(0.1*exp(x)) * sin(0.1*pi*exp(x))

> curve(f, 0, 4); grid()

> quad(f, 0, 4)

[1] 1.282129075

quadl() uses adaptive Lobatto quadrature, which is similar to Gaussian quadra-
ture, but includes the endpoints of the integration interval in the set of integration
points. It is exact for polynomials up to degree 2n− 3, where n is the number of
integration points.

NUMERICAL INTEGRATION 141

> quadl(f,0,1)

[1] 1.282129074

The quad() function might be more efficient for low accuracies with nonsmooth
integrands, while the quadl() function might be more efficient than quad() at
higher accuracies with smooth integrands.

Another advantage of quad() and quadl() is that the integrand does not need
to be vectorized.

Function cotes() provides composite Newton–Cotes formulas of degrees 2 to 8.
It takes as arguments the integrand, upper and lower limit, the number of subintervals
to treat separately, and the number of nodes (the degree).

For the function above, because Newton–Cotes formulas are not adaptive, one
needs a lot of intervals to get a good result.

> cotes(f, 0, 4, 500, 7)

[1] 1.282129074

No discussion of integration is complete without mentioning Romberg integra-
tion. Romberg’s method approximates the integral with applying the trapezoidal rule
(such as in trapz()) by doubling the number of subintervals in each step, and ac-
celerates convergence by Richardson extrapolation.

> romberg(f, 0, 4, tol=1e-10)

$value

[1] 1.282129074

$iter

[1] 9

$rel.error

[1] 1.880781318e-13

The advantages of Romberg integration are the small number of calls to the in-
tegrand function compared to other integration methods—an advantage that will be
relevant for difficult or costly to compute functions—and the quite high accuracy
that can be reached. The functions should not have singularities and should not be
oscillatory.

The last approach to mention is adaptive Clenshaw–Curtis quadrature, an in-
tegration routine that has gained popularity and is now considered to be a rival to
Gauss–Kronrod. Clenshaw–Curtis quadrature is based on an expansion of the inte-
grand in terms of Chebyshev polynomials. Unlike Gauss quadrature, which is ex-
act for polynomials up to order 2n− 1, Clenshaw–Curtis quadrature is only exact
for polynomials up to order n. However, since it uses the fast Fourier transform
algorithm, the weights and nodes are computed in linear time. Its speed is further
enhanced by the fact that the Chebyshev polynomial expansion of many functions
converges rapidly. The function cannot have singularities.

> quadcc(f, 0, 4)

[1] 1.282129074

142 NUMERICAL DIFFERENTIATION AND INTEGRATION

The implementation of quadcc() in pracma at the moment is iterative, not adap-
tive. That is, it will half all subintervals until the tolerance is reached. An adaptive
version to come will be a strong competitor to integrate() and quadgk().

pracma provides a function integral() that acts as a wrapper for some of the
more important integration routines in this package. Some examples are given on the
help page. Here we test it on the dilogarithm function∫ 1

0

log(1− t)
t

dx =
π2

6
(6.16)

> flog = function(t) log(1-t)/t

> val = pi^2/6

> for (m in c("Kron", "Rich", "Clen", "Simp", "Romb")) {

+ Q = integral(flog, 0, 1, reltol = 1e-12, method = m)

+ cat(m, Q, abs(Q-val), "\n")

+ }

Kron -1.644934067 9.858780459e-14 # Gauss-Kronrod

Rich -1.644934067 2.864375404e-14 # Gauss-Richardson

Clen -1.644934067 8.459899448e-14 # Clenshaw-Curtis

Simp -1.644934067 8.719469591e-12 # Simpson

Romb -1.645147726 0.0002136594219 # Romberg

> integrate(flog, 0, 1, rel.tol=1e-12)$value - val

[1] 0

Romberg does not come out well because the function has a pole at x = 1; and
Gauss–Richardson is very accurate. But integrate() is certainly reliable and ac-
curate in most cases.

6.2.5 Functions with singularities

If a function has one or more singularities (or discontinuities) within the integration
domain (also called improper integrals), the result of a numerical integration can be
strange or even unpredictable. For example, integrate the function 1/x2 from −1 to
1. In theory, the function is divergent, i.e., has no finite value.

> f = function(x) 1/x^2

> integrate(f, -1, 1)

Error in integrate(f, -1, 1) : non-finite function value

> integrate(f, -1, 1 - 1e10)

2753.484 with absolute error < 0

> integrate(f, -1, 1 - 1e-05)

Error in integrate(f, -1, 1 - 1e-05) :

the integral is probably divergent

NUMERICAL INTEGRATION 143

The first error occurs because the integration tries to evaluate f (0). If one of the
boundary points is changed with a tiny value, integrate returns an answer that
makes no sense; only the third call to integrate finds the correct answer.

If there are singularities (or discontinuities) in the integration interval, try to split
the integral into a sum of integrals where singularities are on the boundary. As an
example, we integrate the function 1/

√
x on [0,1]. The function is integrable; that is

the integral has a finite value.

> f = function(x) 1/sqrt(x)

> integrate(f, 0, 1)

2 with absolute error < 5.8e-15

The result is exact because the antiderivative of f is 2
√

x.
As another task, compute the following improper integral∫ 1

0

dx√
sinx

(6.17)

whose exact, symbolic solution would require the hypergeometric series.

> f = function(x) 1/sqrt(sin(x)

> integrate(f, 0, 1)

2.034805 with absolute error < 9.1e-10

Note that since the quadrature rules will never use the value of the function on
the boundary, the singularity at 0 will not disturb as f (0) is never computed. For
this reason, removable singularities such as x = 0 in x→ sinx

x pose no problem to
integration routines based on quadrature rules.

But this approach of “ignoring the singularity” may not work if the integrand is
oscillating, e.g., ∫ 1

0

1
x

sin
(

1
x

)
dx (6.18)

which has a singularity in 0 that is approached in an oscillating manner.

> f = function(x) 1/x * sin(1/x)

> integrate(f, 0, 1)

Error in integrate(f, 0, 1) : the integral is probably divergent

But this “diagnosis” is not correct; in reality the integral converges. One can see
this by transforming the variable with u = 1/x:∫ 1

0

1
x

sin(
1
x

)dx =
∫ ∞

1

sin(u)
u

du (6.19)

and we will compute this integral in the next section. The example shows there is
a kind of connection between improper and infinite integral—especially with oscil-
lating functions—that often can be exploited with some background knowledge in
mathematics.

144 NUMERICAL DIFFERENTIATION AND INTEGRATION

6.2.6 Infinite integration domains

Functions that are integrated over infinite domains, such as [−∞,∞] or [0,∞], will
need to decrease sufficiently fast to 0 when approaching infinity. It is difficult for an
integration routine to automatically recognize whether this is the case or not.

A well-behaved function is the Gauss error integral, well known in statistical
applications and rapidly going to 0, defined as

1√
2π

∫ ∞
−∞

e−
1
2 t2

dt (6.20)

whose value must be 1. We define the function explicitly, though it is available in R
as pnorm().

> fgauss = function(t) exp(-t^2/2)

> (q = integrate(fgauss, -Inf, Inf))

2.506628 with absolute error < 0.00023

> q$value / sqrt(2*pi)

[1] 1

But if we put the peak far outside, integrate() has difficulties finding it there.

> mu = 1000

> fgauss = function(t) exp(-(t-mu)^2/2)

> integrate(fgauss, -Inf, Inf)

0 with absolute error < 0

For infinite domains it is recommended on the help page: “When integrating
over infinite intervals do so explicitly, rather than just using a large number as the
endpoint. This increases the chance of a correct answer.”

And if using finite endpoints, try to put the “mass” of the integrand somewhere
near the middle of the interval. (This may not be possible if the function is multi-
modal with peaks far away from each other.)

> integrate(fgauss, 0, 2000)

2.506628 with absolute error < 5e-07

while integrate(fgauss, 0, Inf) will run into disaster again.
Not all integrable functions on infinite intervals are as rapidly decreasing as e−x2

or e−x. First, we will look at a critical example: 1/x from 1 to infinity.

> integrate(function(x) 1/x, 1, Inf)

Error in integrate(function(x) 1/x, 1, Inf) :

maximum number of subdivisions reached

The function does not have a finite integral, and this error message is a typical—
but not invariable—indication for integrals that do not converge.

There is a trick to cope with integrals on infinite domains by mapping the infinite
range onto a finite interval, for instance with a transformation like u = (1/x2) f (1/x).

NUMERICAL INTEGRATION 145

Function integrate() does this for us internally and thus can solve the following
classical integrals almost exactly:∫ ∞

0

√
xe−x dx =

√
π

2
,

∫ ∞
0

xe−x2
dx =

1
2
,

∫ ∞
−∞

1
1 + x2 dx = π (6.21)

> f = function(x) sqrt(x) * exp(-x)

> integrate(f, 0, Inf)

0.8862265 with absolute error < 2.5e-06

> f = function(x) x * exp(-x^2)

> integrate(f, 0, Inf)

0.5 with absolute error < 2.7e-06

> f = function(x) 1 / (1+x^2)

> integrate(f, -Inf, Inf)

3.141593 with absolute error < 5.2e-10

In the table of Section 6.2.3 Gauss–Laguerre and Gauss–Hermite quadrature
were mentioned for integrals of the form∫ ∞

0
f (x)xae−xdx (6.22)

and ∫ ∞
−∞

f (x)e−x2
dx (6.23)

respectively, where function f does not increase too strongly.
Functions gaussLaguerre() and gaussHermite() in package pracma imple-

ment this approach. Applying them to the first function above results in

> require(pracma)

> cc = gaussLaguerre(4, 0.5) # nodes and weights, a = 1/2

> sum(cc$w) # function f = 1

[1] 0.8862269

> cc = gaussHermite(8) # nodes and weights

> sum(cc$w * cc$x^2) # function f(x) = x^2

[1] 0.8862269

The reader may verify that
∫∞

0
√

xe−x dx =
∫∞
−∞ x2 e−x2

dx by applying the transfor-
mation u = x2.

Example — There is still the task, left over from the last section, to compute the
integral

∫∞
1

sin(u)
u du.

> f = function(u) sin(u)/u

> integrate(f, 1, Inf)

Error in integrate(f, 1, 10000): maximum number of subdivisions reached

146 NUMERICAL DIFFERENTIATION AND INTEGRATION

But we know that this integral can be expressed as an alternating sum with
smaller and smaller contributions, thus it must converge. Because the sign changes
at every nπ , we compute the integral to 106π and to (106 + 1)π ,

> N = 10^6

> quadgk(f, 1, N*pi); quadgk(f, 1, (N+1)*pi) # takes some time

[1] 0.6247254

[1] 0.6247149

and the value of the integral will be 0.624720±0.00001. (Do not use integrate()
as it will declare “the integral is probably divergent” or say “maximum number of
subdivisions reached.”)

6.2.7 Integrals in higher dimensions

Multiple integrals, that is integrals of multivariate functions in higher dimensional
space, are quite common in scientific applications. As an example we will try to
compute the following integral∫ 1

0

∫ 1

0

1
1 + x2 + y2 dxdy (6.24)

over the rectangular domain [0,1]x[0,1]. The first idea could be to solve this task as
a twofold univariate integration by defining an intermediate function.

> fx = function(y) integrate(function(x) 1/(1+x^2+y^2), 0, 1)$value

> Fx = Vectorize(fx)

> (q1 = integrate(Fx, 0, 1))

0.6395104 with absolute error < 7.1e-15

This result will probably not be as accurate as the abs.error indicates because
the inner function is itself an integral calculated with some error. There should be an
easier and more accurate way to do this calculation.

For multidimensional integration two packages on CRAN, cubature and
R2Cuba, provide this functionality on hyperrectangles using adaptive procedures in-
ternally. The integrand has to be a function of a vector, so in our case

> f = function(x) 1 / (1 + x[1]^2 + x[2]^2)

The integration function in cubature is called adaptIntegrate, so

> require(cubature)

> (q2 = adaptIntegrate(f, c(0, 0), c(1, 1)))

$integral

[1] 0.6395104

$error

[1] 4.5902e-06

$functionEvaluations

[1] 119

$returnCode

[1] 0

NUMERICAL INTEGRATION 147

R2Cuba contains three different numerical integration routines—cuhre(),
divonne(), and suave()—plus one Monte Carlo algorithm. The most com-
monly used one is cuhre(). The calling syntax is slightly more difficult than for
adaptIntegrate(), and normally the accuracy of adaptIntegrate() is also a
bit higher.

For two- and three-dimensional integrals there are two integration functions
available in package pracma, integral2() and integral3(). Unfortunately,
integral2 for 2-dimensional integrals needs a function definition using two vari-
ables explicitely.

> require(pracma)

> f = function(x, y) 1 / (1 + x^2 + y^2)

> (q3 = integral2(f, 0, 1, 0, 1))

$Q

[1] 0.6395104

$error

[1] 4.975372e-08

For each of these integration functions, a tolerance can be set in the call.
With default tolerances, which of the three results is more accurate? This inte-
gral cannot be solved symbolically, still the true value up to 15 digits is v =
0.6395103518703056 . . ., thus

> print(q1$value, digits=16) # 0.6395103518703110, abs error < 1e-14

> print(q2$integral,digits=16) # 0.6395103518438505, abs error < 1e-10

> print(q3$Q, digits = 16) # 0.6395103518702119, abs error < 1e-13

integral2() has some other nice and useful features:

• The endpoints of the integration interval of the inner integral can be (simple)
functions of the value of the outer integration variable.
• integral2() can handle singularities at the endpoints (to a certain degree).
• The integrand can be integrated over domains characterized in polar coordinates.

The following example has been discussed on the R-help mailing list: Find the
value of the integral

1
2π

∫ 5

0

∫ 5

x
e−y/2

√
x

y− x
dydx (6.25)

The integrand is singular at the line y = x, and applying adaptIntegral() to it
will not be successful. The lower endpoint of the integral is given through the value
of x, thus
> require(pracma)

> f = function(x, y) 1/(2*pi) * exp(-y/2) * sqrt(x/(y-x))

> q = integral2(f, 0, 5, function(x) x, 5, singular = TRUE)

> q$Q

[1] 0.7127025

148 NUMERICAL DIFFERENTIATION AND INTEGRATION

where singular = TRUE indicates to the integral2 function that special care has
to be taken along the boundaries.

As another example, we show how to compute the integral of the function ln(x2 +
y2) in the ring defined by the two circles x2 + y2 = 3 and x2 + y2 = 5. To define the
boundary of the integral as simple bounds on the variables x and y is not obvious; but
in polar coordinates the region can be described through θ = 0 . . .2π and r = 3 . . .5.
Thus, use integral2 with sector = TRUE:

> require(pracma)

> f = function(x, y) log(x^2 + y^2)

> q = integral2(f, 0, 2*pi, 3, 5, sector = TRUE)

> q

$Q

[1] 140.4194

$error

[1] 2.271203e-07

There are many more two-dimensional integration routines in R, for instance
in package pracma, simpson2d() for a 2D variant of Simpson’s rule, or a 2-
dimensional form of Gaussian quadrature in quad2d(). Readers are asked to look at
the help pages and try out some examples for themselves.

6.2.8 Monte Carlo and sparse grid integration

For four- and higher-dimensional integrals the direct integration routines will become
inaccurate and difficult to handle. This is where the Monte Carlo approach becomes
most useful.

As a naive example, we try to compute the volume of the unit sphere in R3. A set
of N uniformly distributed points in [0,1]3 is generated and the number of points is
counted that lie in the volume of the sphere. Because the unit cube has volume one,
the fraction of points falling into the sphere is also the volume of the sphere in [0,1]3

or one eighth of the total volume.

> set.seed(4321)

> N = 10^6

> x = runif(N); y = runif(N); z = runif(N)

> V = 8 * sum(x^2 + y^2 + z^2 <= 1) / N

> V

[1] 4.195504

The formula for the volume of a sphere of radius r is 4
3 πr3, the exact value being

V = 4.18879 for radius 1. We see that even for a million points the result is not nearly
exact. For good results one needs huge numbers of random points.

To improve the results, specialized techniques to perform Monte Carlo integra-
tion have been developed. In R the R2Cuba package provides the function vegas()

that uses importance sampling to reduce the variance of the result.
Let f be the characteristic function of the sphere in three-dimensional space, i.e.,

f is 1 if x2 +y2 +z2≤ 1 and 0 otherwise. Function vegas() requests that the integrand

NUMERICAL INTEGRATION 149

is able to accept a second variable, the “weight,” (that the user does not need to use
in the function definition), as well as the dimension of space (3) and the number of
components of the integrand (1).

> require(R2Cuba)

> f = function(u, w) {

> x = u[1]; y = u[2]; z = u[3]

> if (x^2 + y^2 + z^2 <= 1) 1 else 0

> }

> ndim = 3; ncomp = 1

> q = vegas(ndim, ncomp, f, lower = c(0,0,0), upper = c(1,1,1))

> (V = 8 * q$value)

[1] 4.18501

Better than before, but still not very accurate. For these low-dimensional problems,
standard integration procedures will probably work better in most cases.

As an example in dimension D = 10 we will compute the following integral

I =
∫ 1

0
. . .
∫ 1

0

D

∏
d=1

(
1

2π
e−

1
2 x2

d)dxD . . .dx1 (6.26)

that in some form will often arise in statistical applications. Because the function
is the product of one-dimensional functions, the integral can be calculated as the
product of univariate integrals.

> f = function(x) prod(1/sqrt(2*pi)*exp(-x^2))

As this function is not vectorized(!) let’s compute the one-dimensional integral
with quad(), and then the 10th power will be a good approximation of the integral
we are looking for.

> require(pracma)

> I1 = quad(f, 0, 1)

> I10 = I1^10

> I1; I10

[1] 0.2979397

[1] 5.511681e-06

adaptIntegrate() will not return a result for higher-dimensional integrals in
an acceptable time frame. We test integration routines cuhre() and vegas() on this
function in 10 dimensions:

> require(R2Cuba)

> ndim = 10; ncomp = 1

> cuhre(ndim, ncomp, f, lower=rep(0, 10), upper=rep(1, 10))

Iteration 1: 2605 integrand evaluations so far

[1] 5.51163e-06 +- 4.32043e-11 chisq 0 (0 df)

Iteration 2: 7815 integrand evaluations so far

[1] 5.51165e-06 +- 5.03113e-11 chisq 0.104658 (1 df)

integral: 5.511651e-06 (+-5e-11)

150 NUMERICAL DIFFERENTIATION AND INTEGRATION

nregions: 2; number of evaluations: 7815; probability: 0.2536896

> vegas(ndim, ncomp, f, lower=rep(0, 10), upper=rep(1, 10))

Iteration 1: 1000 integrand evaluations so far

[1] 5.44824e-06 +- 1.64753e-07 chisq 0 (0 df)

...

Iteration 6: 13500 integrand evaluations so far

[1] 5.50905e-06 +- 4.75364e-09 chisq 1.17875 (5 df)

integral: 5.509047e-06 (+-4.8e-09)

number of evaluations: 13500; probability: 0.05310032

The results are quite good, though the error terms do not correctly indicate the true
absolute error.

There is another routine for multiple integrals in higher dimensions in package
SparseGrid. Applying it to our 10-D example is slightly more complicated, but the
result is excellent.

First, a grid will be created with a certain accuracy level, where, e.g., k = 2 means
the result will be exact for polynomials up to total order 2k− 1. Different types of
quadrature rules are available.

> library(SparseGrid)

> ndim = 10

> k = 4

> spgrid = createSparseGrid(type = "KPU", dimension = ndim, k = k)

> n = length(spgrid$weights)

spgrid consists of nodes and weights. The integral will be calculated as the sum
of weights times the values of the function at the nodes.

> I = 0

> for (i in 1:n) I = I + f(spgrid$nodes[i,])*spgrid$weights[i]

> I

[1] 5.507235e-06

The result is correct with an absolute error less than 0.005. For mid-sized dimen-
sions a deterministic routine such as cuhre still seems better suited than a Monte
Carlo or Sparse Grid approach.

6.2.9 Complex line integrals

In electrical engineering, complex line integrals are quite common. Most of the inte-
gration routines in R and its packages do not handle complex numbers and complex
functions. We will look at an example and ways to compute line integrals.

The trapz() function in package pracma works with complex numbers. To
compute the function 1/z in a circle of radius 1 around the origin, first generate
points on the unit circle with the complex exponential, apply function 1/z and then
trapz() on the generated points.

NUMERICAL INTEGRATION 151

> require(pracma)

> N = 100

> s = seq(0, 1, length.out = N)

> z = exp(2*pi*1i * s)

> trapz(z, 1/z)

[1] 0+6.278968i

The exact result is 2πi because 1
2πi
∫

C
1
z dz = 1 according to Cauchy’s integral

theorem for every simple closed curve C around the origin.
Another approach is to split the complex function into real and imaginary parts

and integrate these functions separately as real functions. cintegral() in pracma

does exactly this implicitly. The points along the integration curve are provided in
the waypoints parameter.

> require(pracma)

> N = 100

> s = seq(0, 1, length.out = N)

> z = cos(2*pi*s) + 1i * sin(2*pi*s)

> f = function(z) 1/z

> cintegral(f, waypoints = z)

[1] 0+6.283185i

The result is much more accurate now as the two real functions representing real
and imaginary parts are integrated utilizing a quadrature rule.

It is possible to integrate the function along a rectangle, e.g., with corners (−1−
1i,−1 + 1i,1 + 1i,1−1i,−1−1i) in this sequence.

> require(pracma)

> points = c(-1-1i, -1+1i, 1+1i, 1-1i, -1-1i)

> cintegral(function(z) 1/z, waypoints = points)

[1] 0+6.283185i

The result is the same as above because a complex line integral only depends on
the residua of poles lying inside the closed curve. But the computation of the complex
integrals along straight lines is in general faster and more accurate than along curved
lines.

Of course, this function can also be used for real line integrals, that is, integrals
of real functions in the plane along lines or curves.

Package elliptic (not currently available for Mac OS X) provides another rou-
tine for complex line integrals, here called “contour integrals,” the function name
being integral.contour(). The curve needs to be defined as a differentiable func-
tion, say u, the path runs from u(0) to u(1), and the user has to supply the derivative
function of u explicitly.

> install.packages("elliptic")

> require(elliptic)

> u = function(x) exp(2i*pi*x)

> uprime = function(x) 2i*pi*exp(2i*pi*x)

> integral.contour(f, u, uprime)

152 NUMERICAL DIFFERENTIATION AND INTEGRATION

[1] 0+6.283185i

with the same accuracy as above. There is also a function integral.segment()

that has a similar functionality as cintegral() with parameter waypoints.

6.3 Symbolic manipulations in R

R is not totally bereft of symbolic capabilities. Base R has two functions for returning
symbolic derivatives: D and deriv. D is simpler, while deriv provides more infor-
mation. According to the help page, “The internal code knows about the arithmetic
operators +, -, *, / and ^, and the single-variable functions exp, log, sin, cos, tan, sinh,
cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma, lgamma, digamma and trigamma,
as well as psigamma for one or two arguments (but derivative only with respect to
the first). (Note that only the standard normal distribution is considered.)”

6.3.1 D()

As an example of how to use D(), consider applying it to the function

f (x) = sin(x)e−ax (6.27)

> # Define the expression and its function counterpart

> f = expression(sin(x)*exp(-a*x))

> ffun = function(x,a) sin(x)*exp(-a*x)

> # Take the first derivative

> (g = D(f,"x"))

cos(x) * exp(-a * x) - sin(x) * (exp(-a * x) * a)

> # Turn the result into a function

> gfun = function(x,a) eval(g)

> # Take the second derivative

> (g2 = D(g,"x"))

-(cos(x) * (exp(-a * x) * a) + sin(x) * exp(-a * x) + (cos(x) *

(exp(-a * x) * a) - sin(x) * (exp(-a * x) * a * a)))

> # Turn the result into a function

> g2fun = function(x,a) eval(g2)

> # Plot the function and its derivatives, with a = 1

> curve(ffun(x,1),0,4, ylim = c(-1,1), ylab=c("f(x,1) and

+ derivatives"))

> curve(gfun(x,1), add=T, lty=2)

> curve(g2fun(x,1), add=T, lty=3)

> legend("topright", legend = c("f(x,1)", "df/dx", "d2f/dx2"),

+ lty=1:3, bty="n")

6.3.2 deriv()

An equivalent result is obtained with the deriv() function, albeit at the cost of
greater complexity.

SYMBOLIC MANIPULATIONS IN R 153

0 1 2 3 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

f(x
,1

) a
nd

 d
er

iv
at

iv
es

f(x,1)
df/dx
d2f/dx2

Figure 6.3: Plot of the function defined by Equation 6.27 and its first and second derivatives.

> (D1 = deriv(f,"x"))

expression({

.expr1 <- sin(x)

.expr4 <- exp(-a * x)

.value <- .expr1 * .expr4

.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))

.grad[, "x"] <- cos(x) * .expr4 - .expr1 * (.expr4 * a)

attr(.value, "gradient") <- .grad

.value

})

> x = 0:3

> a = 1

> options(digits=3)

> eval(D1)

[1] 0.00000 0.30956 0.12306 0.00703

attr(,"gradient")

x

[1,] 1.0000

[2,] -0.1108

[3,] -0.1794

[4,] -0.0563

To use the result of deriv() in a function, and to get the second derivative (the
Hessian in this case) as well, proceed as follows
> (D1fun = deriv(f,"x", hessian = T, func=T))

function (x)

{

.expr1 <- sin(x)

.expr4 <- exp(-a * x)

.expr5 <- .expr1 * .expr4

.expr6 <- cos(x)

154 NUMERICAL DIFFERENTIATION AND INTEGRATION

.expr8 <- .expr4 * a

.expr11 <- .expr6 * .expr8

.value <- .expr5

.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))

.hessian <- array(0, c(length(.value), 1L, 1L), list(NULL,

c("x"), c("x")))

.grad[, "x"] <- .expr6 * .expr4 - .expr1 * .expr8

.hessian[, "x", "x"] <- -(.expr11 + .expr5 + (.expr11 - .expr1 *

(.expr8 * a)))

attr(.value, "gradient") <- .grad

attr(.value, "hessian") <- .hessian

.value

}

> D1grad = function(x) attr(D1fun(x),"gradient")

> D1hess = function(x) attr(D1fun(x),"hessian")

The parameter a must be defined in this case as an external (global) variable
> a = 1

The following series of commands then reproduces the previous graph.
> curve(ffun(x,1), 0, 4, ylim = c(-1,1))

> curve(D1grad(x), lty=2, add=T)

> curve(D1hess(x), lty=3, add=T)

6.3.3 Polynomial functions

As noted in Chapter 4, the PolynomF package enables symbolic differentiation and
integration of polynomial functions. An example of differentiation:
> require(PolynomF)

Loading required package: PolynomF

> (p <- poly.from.zeros(-2:5))

-240*x + 188*x^2 + 252*x^3 - 231*x^4 + 42*x^6 - 12*x^7 + x^8

> deriv(p)

-240 + 376*x + 756*x^2 - 924*x^3 + 252*x^5 - 84*x^6 + 8*x^7

The PolynomF package contains the integral() function for analytic indefinite
integration of polynomials, and for numerical results with specified limits.
> require(PolynomF)

Loading required package: PolynomF

Attaching package: PolynomF

The following object is masked from package:pracma:

integral

> x = polynom() # polynomial ’x’

> p = (x-1)^2 + 10*x^3 + 5*x^4

> p

1 - 2*x + x^2 + 10*x^3 + 5*x^4

> integral(p) # Note: no constant of integration

CASE STUDIES 155

x - x^2 + 0.3333333*x^3 + 2.5*x^4 + x^5

> integral(p, limits = c(0,2))

[1] 72.66667

The pracma package contains the polyder() function to calculate the derivative
of polynomials and products of polynomials. Remember that in pracma, polynomial
coefficients are defined from highest to lowest order.
> require(pracma)

> p = c(3,2,1,1); q = c(4,5,6,0) # coefficients from high to low

> polyder(p)

[1] 9 4 1

> polyder(p,q)

[1] 72 115 128 63 22 6

6.3.4 Interfaces to symbolic packages

Beyond the limited (though still useful) symbolic capabilities discussed in this sec-
tion, R has two packages that interface with broader symbolic mathematics systems.
The package Ryacas provides an interface to yacas (yet another computer algebra
system). And rSymPy provides access from within R to the SymPy computer algebra
system running on Jython (java-hosted python). Detailed discussion of these pack-
ages is beyond the scope of this book; but for those interested, CRAN and various
websites that can be located via Google will give pertinent information.

6.4 Case studies

6.4.1 Circumference of an ellipse

The area A of an ellipse with semi-axes (a,b) is well known to be the simple extension
of the expression for a circle: A = πab. However, the expression for the circumference
C of the ellipse is a much more complicated issue. It can be shown that C = 4aE(e2)
where E is the complete elliptic integral of the second kind, and e is the eccentricity
e =
√

1−b2/a2. The pracma package calculates elliptic integrals with the function
ellipke(), which returns a list with two components, k the value for an integral
of the first kind, and e for the second kind. Thus an ellipse with a = 1,b = 1/2 has
circumference
> require(pracma)

> a=1; b=1/2

> options(digits = 10)

> e = sqrt(1-b^2/a^2)

> E = ellipke(e^2)$e

> (C = 4*a*E)

[1] 4.84422411

A more intuitive way to do this calculation is to integrate along the arc length of
the ellipse. pracma accomplishes this with the arclength() function, which applies

156 NUMERICAL DIFFERENTIATION AND INTEGRATION

2500 3000 3500 4000

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

x

f(x
)

Lorentzian
Gaussian

2500 3000 3500 4000

-4
e-
04

0e
+0
0

4e
-0
4

x

dL
or
(x
)

Figure 6.4: (left) Plot of the function defined by Equation 6.28 compared with a Gaussian.
(right) Derivative of the Lorentzian in the left panel.

Richardson’s extrapolation by refining polygon approximations to the parameterized
curve.
> f = function(t) c(a*cos(t), b*sin(t))

> (C = arclength(f, 0, 2*pi, tol = 1e-10))

$length

[1] 4.84422411

$niter

[1] 10

$rel.err

[1] 2.703881563e-11

6.4.2 Integration of a Lorentzian derivative spectrum

The Lorentzian function
L(x) =

1
π

w
(x− x0)2 + w2 (6.28)

describes the shape of some spectral lines, e.g., in electron paramagnetic resonance
(EPR) spectroscopy. Here x0 is the position of the maximum, and w is the half width
at half height. The function is normalized to unity:∫ ∞

−∞
L(x)dx = 1. (6.29)

Compared with the Gaussian function with µ = x0 and sd = w, the Lorentzian
is sharper near the maximum and decays more slowly away from the maximum, as
can be seen in Figure 6.4 (left). The parameters (x0,w) and the left and right limits
are those typical of a free radical EPR spectrum, with the x-axis in magnetic field
(Gauss) units.

> par(mfrow=c(1,2))

CASE STUDIES 157

> Lor = function(x,x0=3300,w=20) 1/pi*w/((x-x0)^2 + w^2)

> Gau = function(x,x0=3300,w=20) 1/sqrt(2*pi*w^2)*exp(-(x-x0)^2/(2*w^2))

> curve(Lor,2500,4000,ylim = c(0,0.02), n=1000, lty=1,ylab="f(x)")

> curve(Gau,2500,4000,add=T, lty=2)

> legend("topright",legend=c("Lorentzian","Gaussian"),lty=1:2,bty="n")

Integration of the Lorentzian function between±∞ yields the proper normalized
value, but the function decays so slowly that integration between the experimental
limits–a range of 25 halfwidths!–misses almost 2% of the total.
> integrate(Lor,-Inf,Inf)

1 with absolute error < 2.5e-05

> integrate(Lor,2500,4000)

0.9829518 with absolute error < 4.5e-07

Usually, EPR spectra are collected in derivative mode, which emphasizes the
maximum and the width (Figure 6.4 (right)).
> require(pracma)

> dLor = function(x) numdiff(Lor,x)

> curve(dLor(x), 2500,4000, n=1000)

> abline(0,0,lty=2)

In a typical experiment, the derivative spectrum may be collected at 1000 equally
spaced points. To determine the concentration of spins, the derivative spectrum must
be integrated to get the “original” spectrum, then integrated again over the limits of
observation to get the area under the curve. The trapz() and cumtrapz() functions
in pracma can serve this purpose.

> xs = seq(2500,4000,len=1000)

> ys = Lor(xs)

> dys = dLor(xs)

> trapz(xs,ys) # Normalized to 1

[1] 0.9829518

As a check, we see that trapz() applied to the digitized spectrum gives the same
result as integrate() applied to the Lorentzian function between the same limits.

We now apply cumtrapz() to recreate the digitized spectrum over the full range,
and then trapz() to integrate the digitized spectrum over that range.
> intdys = cumtrapz(xs,dys)

> trapz(xs,intdys)

[1] 0.9680403

The integral is further decreased relative to the true value of 1, again due more to the
finite range of integration rather than to inadequacy of the integration routine.

6.4.3 Volume of an ellipsoid

The volume of an ellipsoid with semi-axes A,B,C is V = 4
3 πABC.

158 NUMERICAL DIFFERENTIATION AND INTEGRATION

> A = 1; B = 2/3; C = 1/2

> (V = 4/3*pi*a*b*c)

[1] 1.396263

We use the vegas() function in the R2Cuba package to evaluate the volume
using a Monte Carlo method.
> require(R2Cuba)

> f = function(u) {

+ x = u[1]; y=u[2]; z = u[3]

+ if (x^2/A^2 + y^2/B^2 +z^2/C^2 <=1) 1 else 0

+ }

> ndim=3; ncomp=1

> q = vegas(ndim,ncomp,f,lower=c(-A,-B,-C), upper=c(A,B,C))

Iteration 1: 1000 integrand evaluations so far

[1] 1.40533 +- 0.0421232 chisq 0 (0 df)

Iteration 2: 2500 integrand evaluations so far

[1] 1.38394 +- 0.0269662 chisq 0.182942 (1 df)

Iteration 3: 4500 integrand evaluations so far

...

Iteration 12: 45000 integrand evaluations so far

[1] 1.39231 +- 0.0116365 chisq 2.52888 (11 df)

Iteration 13: 52000 integrand evaluations so far

[1] 1.39815 +- 0.0112514 chisq 2.77392 (12 df)

> (V = q$value)

[1] 1.398148

Readers can judge whether this level of accuracy is sufficient for their purposes.

Chapter 7

Optimization

Scientists and engineers often have to solve for the maximum or minimum of a multi-
dimensional function, sometimes with constraints on the values of some or all of the
variables. This is known as optimization, and is a rich, highly developed, and often
difficult problem. Generally the problem is phrased as a minimization, which shows
its kinship to the least-squares data fitting procedures discussed in a subsequent chap-
ter. If a maximum is desired, one simply solves for the minimum of the negative of
the function. The greatest difficulties typically arise if the multi-dimensional surface
has local minima in addition to the global minimum, because there is no way to show
that the minimum is local except by trial and error.

R has three functions in the base installation: optimize() for one-dimensional
problems, optim() for multi-dimensional problems, and constrOptim() for opti-
mization with linear constraints. (Note that even “unconstrained” optimization nor-
mally is constrained by the limits on the search range.) We shall consider each of
these with suitable examples, and introduce several add-on packages that expand the
power of the basic functions. Optimization is a sufficiently large and important topic
to deserve its own task view in R, at http://cran.r-project.org/web/views/
Optimization.html.

In addition to the packages considered in this chapter, the interested reader
should become acquainted with the nloptr package, which is considered one of
the strongest and most comprehensive optimization packages in R. According to its
synopsis,“nloptr is an R interface to NLopt. NLopt is a free/open-source library for
nonlinear optimization, providing a common interface for a number of different free
optimization routines available online as well as original implementations of various
other algorithms.”

7.1 One-dimensional optimization

The base R function for finding minima (the default) or maxima of functions of a
single variable is optimize(). As a concrete example, given a 16× 20 sheet of
cardboard, find the size x of the squares to be cut from the corners that maximizes
the volume of the open box formed when the sides are folded up. x must be in the
range (0,8).
> optimize(function(x) x*(20-2*x)*(16-2*x), c(0,8), maximum=T)

159

160 OPTIMIZATION

0.0 1.0 2.0 3.0

-2
-1

0
1

2

x

f(x
)

Figure 7.1: Plot of function f (x) = x sin(4x) showing several maxima and minima.

$maximum

[1] 2.944935

$objective

[1] 420.1104

Consider next the use of optimize with the function
> f = function(x) x*sin(4*x)

which plotted looks like this (Figure 7.1):
> curve(f,0,3)

It has two minima in the x = 0− 3 range, with the global minimum near 2.8,
and two maxima, with the global maximum near 2.0. Applying optimize() in the
simplest way yields
> optimize(f,c(0,3))

$minimum

[1] 1.228297

$objective

[1] -1.203617

which gives the local minimum because it is the first minimum encountered by the
search algorithm (Brent’s method, which combines root bracketing, bisection, and
inverse quadratic interpolation). Because we have a plot of the function, we can see
that we must exclude the local minimum from the lower and upper endpoints of the
search interval.
> optimize(f,c(1.5,3))

$minimum

[1] 2.771403

$objective

[1] -2.760177

To find the global maximum we enter

ONE-DIMENSIONAL OPTIMIZATION 161

> optimize(f,c(1,3),maximum=TRUE)

$maximum

[1] 1.994684

$objective

[1] 1.979182

We could have obtained the same result by minimizing the negative of the function
> optimize(function(x) -f(x),c(1,3))

$minimum

[1] 1.994684

$objective

[1] -1.979182

which finds the maximum in the right place but, of course, yields the negative of the
function value at the maximum.

If necessary, the desired accuracy can be adjusted with the tol option in the
function call.

The pracma package contains the function findmins(), which finds the posi-
tions of all the minima in the search interval by dividing it n times (default n = 100)
and applying optimize in each interval. To find the values at those minima, evaluate
the function.
> require(pracma)

> f.mins = findmins(f,0,3)

> f.mins # x values at the minima

[1] 1.228312 2.771382

> f(f.mins[1:2]) # function evaluated at the minima

[1] -1.203617 -2.760177

The Examples section of the help page for optimize() shows how to include
a parameter in the function call. It also shows how, for a function with a very flat
minimum, the wrong solution can be obtained if the search interval is not properly
chosen. Unfortunately, there is no clear way to choose the search interval in such
cases, so if the results are not as expected from inspecting the graph of the function,
other intervals should be explored.

The function f (x) = |x2−8| yields some interesting behavior (Figure 7.2).
> f = function(x) abs(x^2-8)

> curve(f,-4,4)

Straightforward solving for the maximum over the entire range yields the result at
x = 0.
> optimize(f,c(-4,4),maximum=T)

$maximum

[1] -1.110223e-16

$objective

[1] 8

Excluding the middle from the search interval finds the maxima at the extremes.

162 OPTIMIZATION

-4 -2 0 2 4

0
2

4
6

8

x

f(x
)

Figure 7.2: Plot of function f (x) = |x2−8| showing several maxima and minima.

> optimize(f,c(-4,-2),maximum=T)

$maximum

[1] -3.999959

$objective

[1] 7.999672

> optimize(f,c(2,4),maximum=T)

$maximum

[1] 3.999959

$objective

[1] 7.999672

However, “the endpoints of the interval will never be considered to be local min-
ima” in findmins, because the function applies optimize() to two adjacent subin-
tervals, and the endpoints have only one.
> findmins(function(x) -f(x),-4,4)

[1] -1.040834e-17

> findmins(function(x) -f(x),-4,-3)

NULL

7.2 Multi-dimensional optimization with optim()

Optimization in more than one dimension is harder to visualize and to compute. An
example is a function arising in chemical engineering (Hanna and Sandall, p. 191).

f (x1,x2) =
1
x1

+
1
x2

+
1− x2

x2(1− x1)
+

1
(1− x1)(1− x2)

(7.1)

x1 and x2 are mole fractions, which must lie between 0 and 1. The surface defined by
the function may be visualized by the persp function (Figure 7.3).
> x1 = x2 = seq(.1,.9,.02)

> z = outer(x1,x2,FUN=function(x1,x2) 1/x1 + 1/x2 +

MULTI-DIMENSIONAL OPTIMIZATION WITH OPTIM() 163

x1 x2

z

Figure 7.3: Perspective plot of the function defined by Equation 7.1.

+ (1-x2)/(x2*(1-x1)) + 1/((1-x1)*(1-x2)))

> persp(x1,x2,z,theta=45,phi=0)

The diversity and difficulty of optimization problems has led to the development
of many packages and functions in R, each with its own strengths and weaknesses. It
can therefore be somewhat bewildering to know which to try. According to Borchers
(personal communication),

Whenever one can reasonably assume that the objective function is smooth
or at least differentiable, apply “BFGS” or “L-BFGS-B.” If worried about
memory requirements with high-dimensional problems, try also “CG.” Apply
“Nelder–Mead” only in other cases, and only for low-dimensional tasks. [All
of these are methods of the optim() function.] If the objective function is truly
non-smooth, none of these approaches may be successful.

If you are looking for global optima, first try a global solver (GenSA,
DEoptim, psoptim, CMAES, ...) or a kind of multi-start approach (in low di-
mensions). Try specialized solvers for least-squares problems as they are con-
vex and therefore have only one global minimum.
In addition to these optimization solvers, and others which will be discussed be-

low, there is also the package nloptwrap that is simply a wrapper for the nloptr

package. This, in turn, is a wrapper for the free and powerful optimization library
NLOPT. Consult the R package library for details.

7.2.1 optim() with “Nelder–Mead” default

The optim() function is the workhorse for multi-dimensional optimization in base
R. By default, optim() performs minimization. Its calling usage is
optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B",

"SANN", "Brent"),

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

164 OPTIMIZATION

with the Nelder–Mead method as the default. According to the optim() help page,
Nelder–Mead “uses only function values and is robust but relatively slow. It will
work reasonably well for non-differentiable functions.” Nelder–Mead is a “downhill
simplex method.” In this context, a “simplex” is a figure with n + 1 vertices in an n-
dimensional space: a triangle in a plane, a tetrahedron in three dimensions, etc. In 2-D
as a simple example, the “worst” vertex of the initial triangle is replaced by a better
one, which lowers the value of the function enclosed by the simplex. The process
continues, moving along the plane, until a minimum is reached within the desired
tolerance. See Numerical Recipes, 3rd ed., pp 502–507, for an engaging explanation.

To calculate the position of the minimum of the function defined by Equation
7.1, we first define a function that takes a vector and returns a scalar, as required by
optim().
> f = function(x) {

+ x1 = x[1]

+ x2 = x[2]

+ return(1/x1 + 1/x2 + (1-x2)/(x2*(1-x1)) +

+ 1/((1-x1)*(1-x2)))

+ }

To minimize f with respect to x1 and x2, we write
> optim(c(.5,.5),f)

$par

[1] 0.3636913 0.5612666

$value

[1] 9.341785

$counts

function gradient

55 NA

$convergence

[1] 0

$message

NULL

A common test case for optimization routines in two dimensions is the Rosen-
brock “Banana function,”

f (x1,x2) = 100(x2− x1x2)2 + (1− x1)2 (7.2)

used in the Examples section of the optim() help page (Figure 7.4).
> x1 = x2 = seq(-1.2,1,.1)

> z = outer(x1,x2,FUN=function(x1,x2) {100 *

(x2 - x1 * x1)^2 + (1 -x1)^2})

> persp(x1,x2,z,theta=150)

It appears as if the minimum is somewhere near (1,1). Proceeding as in the previous
example,

MULTI-DIMENSIONAL OPTIMIZATION WITH OPTIM() 165

x1

x2
z

Figure 7.4: Perspective plot of the Rosenbrock banana function defined by Equation 7.2.

> fr = function(x) { # Rosenbrock Banana function

+ x1 = x[1]

+ x2 = x[2]

+ 100 * (x2 - x1 * x1)^2 + (1 - x1)^2

+}

We then apply optim(), with the first argument being a starting guess for the vector
specifying the set of parameters to be optimized over x1 and x2, and the second
argument being the function to be minimized. Since we have not specified a method,
optim() uses the Nelder–Mead default.
> optim(c(-1.2,1), fr)

$par

[1] 1.000260 1.000506

$value

[1] 8.825241e-08

$counts

function gradient

195 NA

$convergence

[1] 0

$message

NULL

7.2.2 optim() with “BFGS” method

Sometimes a solution can be obtained more quickly and accurately if an analytical
form of the gradient of the function is provided. This is the approach taken by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, which uses an adaptation of
Newton’s method: f (x) is approximated by a quadratic function around the current
value of the x vector, and then a step is taken toward the minimum (or maximum)
of that quadratic function. At the optimum, the gradient must be zero. The BFGS

166 OPTIMIZATION

method is illustrated in the following example, which also uses the Rosenbrock ba-
nana function.
> grr = function(x) { ## Gradient of fr

+ x1 = x[1]

+ x2 = x[2]

+ c(-400*x1*(x2-x1*x1)-2*(1-x1),

+ 200 * (x2 - x1 * x1))

+ }

> optim(c(-1.2,1), fr, grr, method = "BFGS")

$par

[1] 1 1

$value

[1] 9.594956e-18

$counts

function gradient

110 43

$convergence

[1] 0

$message

NULL

We see that in this case the $par components are found exactly, the value of fr at
that point is essentially equal to zero, and the computation took 110 evaluations (plus
43 evaluations of the gradient) instead of 195 for Nelder–Mead.

If the Hessian (the matrix of second partial derivations of the function with re-
spect to the coordinates) at the endpoint is desired, set hessian = TRUE.
> optim(c(-1.2,1), fr, grr, method = "BFGS", hessian=TRUE)

$par

[1] 1 1

$value

[1] 9.594956e-18

$counts

function gradient

110 43

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2]

[1,] 802.0004 -400

[2,] -400.0000 200

MULTI-DIMENSIONAL OPTIMIZATION WITH OPTIM() 167

7.2.3 optim() with “CG” method

The “CG” (conjugate gradients) method of optim() fails for this function—it ap-
pears to converge, but to the wrong values—except if the Poliak–Ribiere updating
(type = 2) is used. According to the help page, “Conjugate gradient methods will
generally be more fragile than the BFGS method, but as they do not store a matrix
they may be successful in much larger optimization problems.”
> optim(c(2, .5), fn = fr, gr = grr, method="CG",

control=list(type=1))

$par

[1] 0.9156605 0.8380146

$value

[1] 0.007103679

$counts

function gradient

405 101

$convergence

[1] 1

$message

NULL

But control=list(type=2) gets it right:
> optim(c(2, .5), fn = fr, gr = grr, method="CG",

control=list(type=2))

$par

[1] 1.000039 1.000078

$value

[1] 1.519142e-09

$counts

function gradient

348 101

$convergence

[1] 1

$message

NULL

7.2.4 optim() with “L-BFGS-B” method to find a local minimum

If we want to find a minimum, even a local one, in a given region, we apply box con-
straints with method = "L-BFGS-B". L-BFGS is a limited memory form of BFGS,
while L-BFGS-B applies box constraints to that method. For example, to find the
minimum in the box with lower limits c(3.5,3.5) and upper limits c(5,5) we execute
> optim(fn = f, par=c(4,5), method="L-BFGS-B",

+ lower= c(3.5,3.5),upper=c(5,5))

$par

[1] 3.5 5.0

168 OPTIMIZATION

$value

[1] -0.09094568

$counts

function gradient

3 3

$convergence

[1] 0

$message

[1] "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL"

Note that the computed minimum value of the function in the box is at one corner,
and it’s not a local minimum of the function.

The material in this and the next section has strong ties to the discussion in Chap-
ter 11 of least-squares fitting of data with nonlinear models, in which the sum of
squared deviations between data and model is the function to be minimized. To give
a preview, suppose we have data representing a functional connection between x and
y:
> set.seed(237)

> x = seq(0, pi, length.out = 50)

> y = sin(x) + 0.1*rnorm(50)

> plot(x, y)

We try to find a smooth spline curve in (0,π) that best approximates this curve in
a least-squares sense, defined with ten equidistant nodes in this interval.
> xp = seq(0, pi, length.out = 12)

The y-coordinates yp of these points have to be determined by an optimization
approach. If xp and yp are known a spline function through these points is defined
by f = splinefun(x, y) and thus the sum-of-squares distance to the given points
can be computed:
> F = function(p) {

+ fsp = splinefun(xp, c(0, p, 0))

+ sum((y - fsp(x))^2)

+ }

and the optimization procedure is
> opt = optim(rep(0.5, 10), F, method="L-BFGS-B",

+ lower = rep(0, 10), upper = rep(1, 10))

opt

$par

[1] 0.2803714 0.4152705 0.8566495 0.9855610 0.9601668 0.9908711

[7] 0.8670039 0.7114714 0.5768663 0.2435485

$value

[1] 0.2905246

$counts

function gradient

9 9

OTHER OPTIMIZATION PACKAGES 169

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

x

y

Figure 7.5: Least squares fit of a spline function to data.

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Now plot the smoothed spline approximation (Figure 7.5):
> fsp = splinefun(xp, c(0, opt$par, 0))

> yy = fsp(x)

> lines(x, yy)

With fewer nodes a more sine-like shape will result.
In comparison, the default "Nelder-Mead" method finds a less satisfactory min-

imum:
> opt <- optim(rep(0.5, 10), F)

> opt

$par

[1] 0.2914511 0.3881710 0.8630475 0.9825521 0.9513082 1.0322379

[7] 0.8621980 0.7084492 0.5955802 0.2432722

$value

[1] 0.3030502

7.3 Other optimization packages

7.3.1 nlm()

The nlm() (nonlinear minimization) function in base R uses a Newton-type algo-
rithm to find the minimum of a function. Here we apply it, with its defaults, to the
Rosenbrock function:
> nlm(fr,c(-2,2))

$minimum

[1] 9.023082e-08

170 OPTIMIZATION

$estimate

[1] 0.9996997 0.9993989

$gradient

[1] 1.348420e-07 -6.012634e-08

$code

[1] 1

$iterations

[1] 49

The nlm() function can be applied without explicit derivatives (gradient) which
are then calculated numerically, as in the example from the help page:
> f <- function(x, a) sum((x-a)^2)

> nlm(f, c(10,10), a = c(3,5))

$minimum

[1] 3.371781e-25

$estimate

[1] 3 5

$gradient

[1] 6.750156e-13 -9.450218e-13

$code

[1] 1

$iterations

[1] 2

or the gradient may be added as an attribute, which leads to somewhat better perfor-
mance:
> f <- function(x, a)

+ {

+ res <- sum((x-a)^2)

+ attr(res, "gradient") <- 2*(x-a)

+ res

+ }

> nlm(f, c(10,10), a = c(3,5))

$minimum

[1] 0

$estimate

[1] 3 5

$gradient

[1] 0 0

$code

[1] 1

$iterations

[1] 1

demo(nlm) gives other instructive examples, including the use of derivatives.

OTHER OPTIMIZATION PACKAGES 171

7.3.2 ucminf package

The ucminf() function in the ucminf package employs a quasi-Newton type of al-
gorithm for general-purpose unconstrained, nonlinear optimization. It uses the same
updating of the inverse Hessian as the BFGS method in optim(), and has the same
calling structure as optim(), so the two may be readily interchanged. As an example,
let us find the position of the maximum of the function

f1 =−(2x1−5)2− (x2−3)2− (5x3−2)2.

Since ucminf() finds minima, we apply it to the negative of f1. We also note that,
since each term is squared and thus always positive or zero, f1 will be a maximum,
or − f1 a minimum, when each term equals zero, a condition that can be solved by
inspection: x = c(5/2,3,2/5). A calculation agrees within numerical precision:
> install.packages("ucminf")

> library(ucminf)

> f1 = function(x) (2*x[1]-5)^2 + (x[2]-3)^2 + (5*x[3]-2)^2

> ucminf(c(1,1,1), f1)

$par

[1] 2.4999992 2.9999994 0.4000001

$value

[1] 3.485199e-12

$convergence

[1] 4

$message

[1] "Stopped by zero step from line search"

$invhessian.lt

[1] 0.1257734298 -0.0001776904 -0.0001415078 0.5022988116

-0.0001955878 0.0200489174

$info

maxgradient laststep stepmax neval

1.745566e-05 0.000000e+00 3.500000e-01 1.000000e+01

7.3.3 BB package

The BB package has the optimization functions spg(), BBoptim, and multiStart

with action = "optimize". These functions all have essentially the same calling
structure, and seem to have about the same success as the various methods of optim
in finding the global minimum of f, but may have various advantages of speed or
alternative strategies depending on the problem. The reader is directed to the package
vignette and help pages for details. As an example, let us find the values of (x1,x2)
for which the function

f2 =−sin(x1) sin(x2) sin(x1 + x2).

is a minimum in the region around (π/2,π/2).

172 OPTIMIZATION

> f2= function(x) -sin(x[1])*sin(x[2])*sin(x[1]+x[2])

> require(BB)

> spg(c(pi/2, pi/2), f2)

iter: 0 f-value: -1.224647e-16 pgrad: 1

$par

[1] 1.047197 1.047197

$value

[1] -0.6495191

$gradient

[1] 1.89182e-06

$fn.reduction

[1] 0.6495191

$iter

[1] 6

$feval

[1] 7

$convergence

[1] 0

$message

[1] "Successful convergence"

7.3.4 optimx() wrapper

Given all of these—relatively similar—optimization routines, it has been deemed de-
sirable to have a general-purpose “wrapper” function that calls other R optimization
functions with a single calling usage. The function optimx() in the package of the
same name serves that role. It calls all the methods discussed above in optim(),
and also spg() from the BB package, nlm(), and ucminf(). The “Nelder–Mead”
method is the default, and the “L-BFGS-B” method will be used automatically if
upper and lower limits are supplied. For reasons discussed below, optimx() does
not call the “SANN” simulated annealing method in optim(). It also does not call
“Brent,” because that is a one-dimensional optimization routine.

7.3.5 Derivative-free optimization algorithms

We conclude this section by noting two derivative-free optimization algorithms con-
tained in the dfoptim package: hk() and nmk(). As stated in the Description of the
package, “These algorithms do not require gradient information. ... They can also
handle box constraints on parameters.” In addition, nmk() and its bounded variant
nmkb() can work with non-smooth functions. See the help pages for details and
examples.

OPTIMIZATION WITH CONSTRAINTS 173

7.4 Optimization with constraints

It is often required to optimize an objective function (e.g., maximize yield or profit,
or minimize cost) subject to constraints on the available resources. We shall briefly
treat three aspects of this large topic in this chapter. Functions that may be nonlinear,
but with linear constraints, are discussed in this section. Linear functions with lin-
ear constraints (linear programming) and quadratic functions with linear constraints
(quadratic programming) are dealt with at the end of the chapter.

7.4.1 constrOptim to optimize functions with linear constraints

Base R has the function constrOptim to minimize a function with p unknown pa-
rameters subject to k linear inequality constraints. It uses optim to do most of the
calculation, but adds a logarithmic barrier to enforce the constraints. constrOptim
is called with the usage
constrOptim(theta, f, grad, ui, ci, mu = 1e-04, control = list(),

method = if(is.null(grad)) "Nelder-Mead" else "BFGS",

outer.iterations = 100, outer.eps = 1e-05, ...,

hessian = FALSE)

where
• theta is a vector of the starting guesses for the p parameters;
• f is the function to be minimized;
• grad is either NULL or a function expressing the gradient of f ;
• ui is the k× p constraint matrix;
• ci is the length k constraint vector;
• mu is a small multiplicative parameter that tunes the barrier term;
• the additional arguments are explained on the help page for constrOptim,

An example on the help page shows several ways to minimize the Rosenbrock
banana function, which we have already encountered in our treatment of optim, but
this time applying linear constraints.
from optim

> fr = function(x) {

+ x1 = x[1]

+ x2 = x[2]

+ 100 * (x2 - x1 * x1)^2 + (1 - x1)^2

+ }

> grr <- function(x) { # gradient

+ x1 = x[1]

+ x2 = x[2]

+ c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

+ 200 * (x2 - x1 * x1))

+ }

We know that the minimum is at (1,1), so we first apply the constraints that both
x1 and x2 must be ≤ 1 to test behavior of the function when the optimum is on the

174 OPTIMIZATION

boundary. These constraints are expressed in matrix form as(
1 0
0 1

)(
x1
x2

)
≤
(

1
1

)
(7.3)

The constraints must be of the form lhs ≥ 0, so we rearrange the equation by
moving the unit vector to the left-hand side of the equation, multiply both sides by
-1, and thereby change the ≤ to a ≥, obtaining(

−1 0
0 −1

)(
x1
x2

)
−
(
−1
−1

)
≥
(

0
0

)
(7.4)

This gives the values for ui and ci in the function call below.
> constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)),

ci=c(-1,-1))

$par

[1] 0.9999761 0.9999521

$value

[1] 5.734115e-10

$counts

function gradient

297 94

$convergence

[1] 0

$message

NULL

$outer.iterations

[1] 12

$barrier.value

[1] -0.0001999195

We can use constraints to find the optimum at locations away from the global
minimum. For example, if we wish to find the minimum subject to x1 ≤ 0.9 and
x2− x1 > 0.1, a process similar to the above yields(

−1 0
1 −1

)(
x1
x2

)
−
(
−0.9
0.1

)
≥
(

0
0

)
(7.5)

which leads to
> constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)),

ci=c(-0.9,0.1))

$par

[1] 0.8891335 0.7891335

$value

[1] 0.01249441

$counts

function gradient

OPTIMIZATION WITH CONSTRAINTS 175

254 48

$convergence

[1] 0

$message

NULL

$outer.iterations

[1] 4

$barrier.value

[1] -7.399944e-05

7.4.2 External packages alabama and Rsolnp

R has two external packages, alabama and Rsolnp, that implement the augmented
Lagrange multiplier method for general nonlinear optimization. Both are reliable and
robust, and can handle equality and inequality constraints both linear and nonlinear.
Their optimizer functions will take analytical expressions for the gradients and Hes-
sians of the function to be minimized, and will run faster if these are provided; but
we omit them, leaving the programs to employ numerical differentiation.

alabama has two functions for optimization, constrOptim.nl() and
auglag(), which appear to be essentially identical. The important difference is
that auglag() allows any initial vector of parameter values, even those that violate
inequality constraints. constrOptim.nl(), on the other hand, requires that initial
guesses be “feasible.” Here we demonstrate constrOptim.nl() by seeking to min-
imize the function

sin(x1 ∗ x2 + x3)

subject to the equality constraint

−x1x3
2 + x2

1x2
3 = 5

and the inequality constraints
x1 ≥ x2 ≥ x3.

> f = function(x) sin(x[1]*x[2]+x[3])

> heq = function(x) -x[1]*x[2]^3 + x[1]^2*x[3]^2 -5

> hin = function(x) {

+ h = rep(NA,2)

+ h[1] = x[1]-x[2]

+ h[2] = x[2] -x[3]

+ h

+ }

The minimum value of the sine function is, of course, -1, but we pretend we don’t
know that; nor do we know the values of (x1,x2,x3) that will result in that minimum.
We make an initial guess and ask for the answer.
> p0 = c(3,2,1)

> require(alabama) # Also loads numDeriv package

176 OPTIMIZATION

> ans = constrOptim.nl(par=p0, fn = f, heq=heq, hin = hin)

Min(hin): 1 Max(abs(heq)): 20

Outer iteration: 1

Min(hin): 1 Max(abs(heq)): 20

par: 3 2 1

fval = 0.657

Outer iteration: 2

Min(hin): 0.1767693 Max(abs(heq)): 0.005111882

par: 3.21925 1.16012 0.983351

fval = -1

...

Outer iteration: 6

Min(hin): 0.1758973 Max(abs(heq)): 1.515614e-06

par: 3.21885 1.15866 0.982768

fval = -1

Outer iteration: 7

Min(hin): 0.1758972 Max(abs(heq)): 3.233966e-07

par: 3.21885 1.15866 0.982768

fval = -1

If we had written p0 = c(1,2,3) we would have received an error message that
“initial value violates inequality constraints.” This message would not have appeared
with auglag(). There are, of course, many (x1,x2,x3) triplets that satisfy this mini-
mization problem; which set is found depends on the initial guesses.

We now solve the same problem with the solnp() function in the Rsolnp pack-
age.
> f = function(x) -sin(x[1]*x[2]+x[3])

> heq = function(x) -x[1]*x[2]^3 + x[1]^2*x[3]^2 -5

> hin = function(x) {

+ h = rep(NA,2)

+ h[1] = x[1]-x[2]

+ h[2] = x[2] -x[3]

+ h

+ }

We load the Rsolnp package, which also loads the required truncnorm and
parallel packages. solnp() asks for upper and lower bounds for the variables and
the inequalities. It returns considerably more information about the solution than do
the functions in alabama.
> require(Rsolnp)> upper = rep(5,3)

> lower = rep(0,3)

> p0 = c(3,2,1)

> ans = solnp(pars=p0, fun = f, eqfun=heq, ineqfun = hin, LB=lower,

GLOBAL OPTIMIZATION WITH MANY LOCAL MINIMA 177

+ UB=upper, ineqLB = c(0,0), ineqUB = c(5,5))

Iter: 1 fn: -1.0000 Pars: 3.14272 2.14793 1.10363

Iter: 2 fn: -1.0000 Pars: 3.14272 2.14793 1.10363

solnp--> Completed in 2 iterations

> ans

$pars

[1] 3.142718 2.147934 1.103631

$convergence

[1] 0

$values

[1] -0.6569866 -1.0000000 -1.0000000

$lagrange

[,1]

[1,] -2.977098e-08

[2,] 4.690696e-08

$hessian

[,1] [,2] [,3] [,4] [,5]

[1,] 0.998914483 0.003892931 -0.03114101 -0.05246969 -0.01155423

[2,] 0.003892931 0.964203357 -0.15306182 -0.17612761 -0.10200558

[3,] -0.031141014 -0.153061817 5.18027998 6.33407175 1.91315870

[4,] -0.052469692 -0.176127613 6.33407175 10.52298257 2.94535392

[5,] -0.011554233 -0.102005577 1.91315870 2.94535392 1.85308050

$ineqx0

[1] 0.9947835 1.0443029

$nfuneval

[1] 37

$outer.iter

[1] 2

$elapsed

Time difference of 0.04326391 secs

7.5 Global optimization with many local minima

If a function has many local minima, many starting values of optim may be required
to find the global minimum, and success is not guaranteed. An example of a func-
tion with many local minima is the two-dimensional sum of two sinc (sin(πx)/πx)
functions (Figure 7.6).

> sinc = function(x) sin(pi*x)/(pi*x)

> x1 = x2 = seq(.1, 10, length=50)

> z = outer(x1,x2, FUN = function(x1,x2) sinc(x1)+sinc(x2))

> persp(x1,x2,z)

Actually, in this case we can find the minimum of sinc(x) along one axis:
> optimize(function (x) sinc(x), lower=.1, upper = 3)

$minimum

[1] 1.430279

178 OPTIMIZATION

x1

x2

z

Figure 7.6: Perspective plot of the sum of two sinc functions.

$objective

[1] -0.2172336

so the minimum of the sum of two sinc functions should be near (1.43,1.43). Putting
the function in vector form, pretending we don’t know the answer, and using a plau-
sible starting point with the default options of optim(), the function converges to a
local minimum, but not the global minimum.
> f = function(x) sinc(x[1]) + sinc(x[2])

> optim(c(3,3),f)

$par

[1] 3.47089 3.47089

$value

[1] -0.1826504

$counts

function gradient

107 NA

$convergence

[1] 0

$message

NULL

Two of the major approaches for optimizing functions with many local minima
are simulated annealing and differential evolution.

7.5.1 Simulated annealing

The simulated annealing method is developed by analogy to annealing of a metal or
alloy by slow cooling: at high T the material is in a highly disordered, high energy
state. If cooled quickly, it will be trapped in that state, far from the orderly structure
that gives it minimum free energy. The key is to cool slowly at first, so as to give the
material enough energy to overcome local energy barriers as needed and proceed to
the optimum without being trapped in local minima. As the temperature is lowered

GLOBAL OPTIMIZATION WITH MANY LOCAL MINIMA 179

further, surmounting barriers becomes harder and excursions to higher energy states
become rarer.

This behavior is encapsulated in the Boltzmann equation for the probability of
a jump from a state of energy E1 to a state of energy E2, with change of energy
4E = E2−E1:

P(E) = Aexp(−4E/kBT) (7.6)

where kB is the Boltzmann constant, T the temperature, and A a normalization con-
stant. If 4E > 0, the system moves to a higher energy state with small but not zero
probability. If4E < 0, the system moves to a lower energy state with a higher prob-
ability. A jump to a higher energy state is harder if 4E is larger or if T is smaller,
but it is not impossible so long as T > 0. That is, annealing allows transitions to less
probable states, which enables escaping from local minima.

This mechanism of thermal annealing is the basis for the simulated annealing
algorithm for finding the optimum (minimum) state of some process or system. The
system under examination may be either a continuous function or a finite set of states
(e.g., how to minimize the total distance from point A to point B along a discrete set
of city streets). We shall focus here on the continuous function problem. Starting at
some point characterized by some quantity corresponding to energy E1, the algo-
rithm randomly chooses a nearby point corresponding to energy E2. If E2 < E1, the
energy is lowered by the move, which is therefore accepted. If E2 > E1, the proba-
bility P(4E) is calculated according to the Boltzmann equation and compared with
a random number chosen from a uniform distribution between 0 and 1. If P(4E) is
greater than that number the move is accepted; if less, it is rejected. This process re-
quires a control parameter that is analogous to temperature, and generally starts at a
very high T , such that kBT is much greater than the highest energy. As time (number
of iterations) increases, T decreases, with the rate of decrease slowing with time.

optim contains the ‘‘SANN’’ method to implement simulated annealing, but it
unfortunately is not adequate because it does not provide criteria for convergence; it
simply prints $convergence = 0 after executing maxit iterations. For this reason,
optimx does not include ‘‘SANN’’ in its repertoire of optimization methods. For-
tunately, however, the GenSA package contains an adequate implementation of the
simulated annealing algorithm. For our two-dimensional sinc function, it yields the
correct value and coordinates of the minimum:
> sinc = function(x) sin(pi*x)/(pi*x)

> sinc2D = function(x) sinc(x[1]) + sinc(x[2])

> library(GenSA)

> out = GenSA(c(1,1), sinc2D, lower = c(0,0), upper = c(10,10),

+ control = list(max.time=1))

> out[c("value", "par", "counts")]

$value

[1] -0.4344673

$par

[1] 1.430297 1.430297

$counts

180 OPTIMIZATION

x1
x2

z

Figure 7.7: Perspective plot of Equation 7.7.

[1] 53285

The same results are obtained with max.time = 0.1, but with 10,257 counts.
As another example, consider the function (Figure 7.7)

fsa(x1,x2) = 0.2 + x2
1 + x2

2−0.1cos(6πx1)−0.1cos(6πx2) (7.7)

A perspective plot of this function
> fsa = function(x1,x2) 0.2 + x1^2 + x2^2 - 0.1*cos(6*pi*x1) -

+ 0.1*cos(6*pi*x2)

> x1 = x2 = seq(-1, 1, length=50)

> z = outer(x1,x2, fsa)

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> persp(x1,x2,z)

yields the formidably bumpy plot shown in Figure 7.7.
Inspection of Equation 7.7 shows that the minimum is at (0,0) with value 0.

GenSA() readily finds the correct result, though success with more complicated prob-
lems is not guaranteed.
> fsa = function(x) 0.2 + x[1]^2 + x[2]^2 - 0.1*cos(6*pi*x[1]) -

+ 0.1*cos(6*pi*x[2])

> library(GenSA)

> out = GenSA(c(1,1), fsa, lower = c(0,0), upper = c(10,10),

+ control = list(max.time=1))

> out[c("value", "par", "counts")]

$value

[1] 0

$par

[1] 0 0

$counts

[1] 31095

GLOBAL OPTIMIZATION WITH MANY LOCAL MINIMA 181

7.5.2 Genetic algorithms

Another approach that has proved successful for many complex, multi-dimensional
optimization problems is one or another version of a genetic algorithm, which uses
biological concepts such as mutation, crossover, and evolution to optimize fitness in
a population. In the current context, “population” corresponds to a set of parameter
vectors in a space whose dimension equals n, the number of parameters; “fitness”
corresponds to the value of a scalar function that is to be minimized by choosing
the best values of the parameters; “mutation” corresponds to random changes in the
values of the parameters; “crossover” corresponds to exchanges of several compo-
nents of a vector with those of another; and “evolution” corresponds to the gradual
change of the population of parameter vectors as the function tends toward an opti-
mum. In simple terms, the genetic algorithm approach mimics evolution to optimize
a problem by maintaining a population of candidate solutions, creating new possible
solutions by combining the existing ones according to some simple algorithm, and
choosing that candidate solution which yields the optimum value of the function.

The genetic algorithm approach shares with simulated annealing the advantage
that it can, by random trials, work its way out of local minima to find a global min-
imum. R has several useful contributed packages that implement some version of a
genetic algorithm; three of these are DEoptim, GA, and rgenoud. We shall look at
DEoptim in some detail, and briefly discuss the other two at the end of this section.

7.5.2.1 DEoptim

The “DE” in DEoptim stands for “differential evolution.” The function, with the
same name as the package, is called by the familiar set of arguments: DEoptim(fn,
lower, upper, control = DEoptim.control(), ..., fnMap=NULL). fn is
the function to be minimized. Its first argument should be the vector of parameters
to optimize, and it should return a real scalar result. lower and upper are vectors
that specify the bounds on each parameter, with the ith component of each vector
corresponding to the ith parameter. These vectors should encompass the full range of
allowable values of the parameters.

control is a list of control parameters, discussed in the next paragraph. If
control is not specified, its defaults are used. . . . signifies further arguments, if
any, to be passed to fn. fnMap is “an optional function that will be run after each
population is created, but before the population is passed to the objective function.
This allows the user to impose integer/cardinality constraints.”

DEoptim will often run fine with the default control settings, but sometimes
tweaks in those settings will lead to better results. Settings are modified with the
DEoptim.control function, whose usage is
DEoptim.control(VTR = -Inf, strategy = 2, bs = FALSE, NP = NA,

itermax = 200, CR = 0.5, F = 0.8, trace = TRUE, initialpop = NULL,

storepopfrom = itermax + 1, storepopfreq = 1, p = 0.2, c = 0, reltol,

steptol, parallelType = 0, packages = c(), parVar = c(),

foreachArgs = list())

182 OPTIMIZATION

Some of the more commonly adjusted arguments of this function (see the help
page for the full list and details) are:
• strategy: an integer between 1 and 6 (default = 2), specifying the way in which

successive generations of candidate parameter vectors are chosen. We describe
strategy = 2 in more detail below.

• NP: Number of population members. The default is 10×length(lower). Setting NP
above 40 has been found empirically to not substantially improve convergence,
regardless of the number of parameters.

• itermax: The maximum number of iterations allowed. The default is 200.
• CR: The crossover probability in the interval (0,1). Default is 0.5. However, it

has been suggested that CR = 0.2 is a better choice if the parameters are substan-
tially independent, while CR = 0.9 may be better if there is significant parameter
dependence.

• F: Differential weighting factor (see strategy discussion below), with de-
fault = 0.8. However, according to the Differential Evolution Homepage
(http://www1.icsi.berkeley.edu/ storn/code.html) “It has been found recently that
selecting F from the interval [0.5, 1.0] randomly for each generation or for each
difference vector, a technique called dither, improves convergence behaviour sig-
nificantly, especially for noisy objective functions.”
The default strategy = 2 replaces the classical random mutation strategy = 1 with

the expression

vi,g = oldi,g + (bestg−oldi,g) + xr0,g + F ∗ (xr1,g− xr2,g)

where oldi,g and bestg are the ith member and best member, respectively, of the pre-
vious population. (i stands for the ith parameter, g for the gth generation.) See the
Details section of the DEoptim.control help page for more information on avail-
able strategies.

As an example, we use the Rastrigin function, which is a common test function
for multi-dimensional optimization. Inspection shows that its minimum is 0 at (0,0),
with which the DEoptim calculation adequately agrees.
> fras = function(x) 10*length(x)+sum(x^2-10*cos(2*pi*x))

> require(DEoptim)

> optras = DEoptim(fras,lower=c(-5,-5),upper=c(5,5),

+ control=list(storepopfrom=1, trace=FALSE))

> optras$optim

$bestmem

par1 par2

1.161563e-06 -1.098620e-06

$bestval

[1] 5.071286e-10

$nfeval

LINEAR AND QUADRATIC PROGRAMMING 183

[1] 402

$iter

[1] 200

7.5.2.2 rgenoud

The genoud() function in the rgenoud package combines genetic algorithm meth-
ods with a derivative-based, Newton-like method. The rationale is that over much
of the landscape, a problem may be strongly nonlinear or even discontinuous: the
sort of situation for which evolutionary methods were developed. On the other hand,
near a solution many problems are regular and derivative information is useful. The
approach and implementation are discussed at length, with examples, in the paper
by Mebane and Sekhon (2011) and in the vignette1 and help pages for the package.
In this as in the other genetic algorithm methods, the population size and maximum
number of generations are key variables in reaching an optimal solution, though of
course there are trade-offs with computation time.

7.5.2.3 GA

The GA package developed by Scrucca (2012) is intended as “a flexible, general-
purpose R package for implementing genetic algorithms search in both the contin-
uous and discrete case, whether constrained or not.” Scrucca continues, “Users can
easily define their own objective function depending on the problem at hand. Sev-
eral genetic operators are available and can be combined to explore the best settings
for the current task. Furthermore, users can define new genetic operators and easily
evaluate their performances.” Interested readers should consult the package and its
documentation2 for details and examples.

7.6 Linear and quadratic programming

7.6.1 Linear programming

If the objective function is a linear function of the resources, and the constraints
are linear, this is the domain of linear programming. There are several packages in
R that can handle these kinds of problems very well, notably lpSolve, Rglpk,and
Rsymphony. They all integrate existing free libraries into R that are well tested and
can solve small to mid-sized problems, i.e., with several hundred variables, very
efficiently.

As all three packages are comparable in power and have similar interfaces, pack-
age lpSolve will be used here to explain how to apply a linear programming solver
to this problem class. The solver function lp() from lpSolve uses the Simplex al-
gorithm of George B. Dantzig (1947) and will not only solve linear programs, but
also mixed-integer linear programs (see next section).

1http://cran.r-project.org/web/packages/rgenoud/vignettes/rgenoud.pdf
2http://CRAN.R-project.org/package=GA

184 OPTIMIZATION

The syntax for calling function lp() in lpSolve is as follows:
lp(direction = "min", objective.in, const.mat, const.dir, const.rhs,

transpose.constraints = TRUE, int.vec, presolve=0, compute.sens=0,

binary.vec, all.int=FALSE, all.bin=FALSE, scale = 196, dense.const,

num.bin.solns=1, use.rw=FALSE)

with
• direction is "min" or "max" for a minimization or maximization problem;
• objective.in is the linear objective function to be optimized, represented

through a vector of coefficients;
• const.mat is the matrix of all coefficients of linear constraints, one row per in-

equality, one column per variable;
• const.dir a character vector giving the direction of the constraint, for each in-

equality should be one of ”<”, ”<=”,”=”,”==”, ”>”, or ”>=”
• const.rhs vector of constant values on the right-hand side of the inequalities.
These are the most important arguments. int.vec and binary.vec will be ex-
plained later. For the other, optional arguments see the help page of function lp().

Suppose, for example, that a chemical engineer wants to maximize the revenue
of a process by producing a mixture of products 1 and 2 from feedstocks A, B, and
C. Product 1 yields 500 euros per unit, and product 2 yields 400 euros per unit.
Feedstocks 1, 2, and 3 are available in quantities 100, 50, and 60, respectively. To
make product 1 requires 20 units of A, 5 units of B, and 15 units of C; while the
corresponding requirements for product 2 are 20, 30, and 7. How much of products
1 and 2 should be produced to maximize revenue, given the resource limitations and
requirements?

We will translate the problem into a mathematical formulation. If m1 and m2 are
the amounts produced of products 1 and 2, then the constraints of the problem are
the amounts available of feedstocks 1, 2, and 3, that is

20m1 + 20m2 ≤ 100
5m1 + 30m2 ≤ 50
15m1 + 7m2 ≤ 60

and the profit is 500m1 +400m2, where naturally m1,m2≥ 0. For solving the problem,
these equations and inequalities have to be defined in R as vectors and matrices.

> obj = c(500, 400) # objective function 500*m1+400m2

> mat = matrix(c(20, 20, # constraint matrix

+ 5, 30,

+ 15, 7), nrow=3, ncol=2, byrow=TRUE)

> dir = rep("<=", 3) # direction of inequalities

> rhs = c(100, 50, 60) # right hand side of inequalities

The fact that the variables have to be greater than 0 is always inplicitly assumed
and does not need to be stated. Now we can easily solve this linear programming
problem.

LINEAR AND QUADRATIC PROGRAMMING 185

> require(lpSolve)

> soln = lp("max", obj, mat, dir, rhs)

> soln

Success: the objective function is 2180.723

> soln$solution

[1] 3.493976 1.084337

Of the first product about 3.494 units should be produced, and of the second about
1.084 units. To see that the constraints are respected, multiply the constraint matrix
with the solution vector:
> mat %*% soln$solution

[,1]

[1,] 91.56627

[2,] 50.00000

[3,] 60.00000

Therefore, feedstocks 2 and 3 have been completely used up.
For smaller linear programming problems there is another package, linprog,

that is by far not as powerful as lpSolve, but returns more information about the
problem. Applied to the problem above we see

> require(linprog)

> solveLP(obj, rhs, mat, maximum = TRUE)

Results of Linear Programming / Linear Optimization

Objective function (Maximum): 2180.72

Iterations in phase 1: 0

Iterations in phase 2: 2

Solution

opt

1 3.49398

2 1.08434

Basic Variables

opt

1 3.49398

2 1.08434

S 1 8.43373

Constraints

actual dir bvec free dual dual.reg

1 91.5663 <= 100 8.43373 0.0000 8.43373

2 50.0000 <= 50 0.00000 6.0241 30.00000

3 60.0000 <= 60 0.00000 31.3253 48.33333

186 OPTIMIZATION

All Variables (including slack variables)

opt cvec min.c max.c marg marg.reg

1 3.49398 500 66.6667 857.1429 NA NA

2 1.08434 400 233.3333 3000.0000 NA NA

S 1 8.43373 0 NA 15.6250 0.0000 NA

S 2 0.00000 0 -Inf 6.0241 -6.0241 30.0000

S 3 0.00000 0 -Inf 31.3253 -31.3253 48.3333

Of interest here are the values of the dual variables (under “dual”) for the con-
straints. These values indicate how much the objective will change if the constraints
are changed by one unit. We see that increasing the stock in feedstock 3 is the most
profitable action one can take:
> rhs = c(100, 50, 61)

> lp("max", obj, mat, dir, rhs)

Success: the objective function is 2212.048

and the increase 31.325 in profit is indeed exactly what is predicted by the dual
variable shown in the output above.

7.6.2 Quadratic programming

A less frequently encountered—but still important—type of mathematical optimiza-
tion problem is quadratic programming, which seeks to optimize a quadratic function
of several variables subject to linear constraints on these variables. That is, we wish
to minimize the function

f (x) =−dT x +
1
2

xT Dx

subject to the constraints
AT x≥ x0.

where D is a matrix of quadratic coefficients, d a vector of linear coefficients, A a
matrix of constraints, and x0 a vector of constraint values. Quadratic programming
can be handled in R by the function solve.QP of the package quadprog.

Consider, for example, the function

f (x) =
1
2

x2
1 + x2

2− x1x2−2x1−6x2

with the constraints

x1 + x2 ≤ 2
−x1 + 2x2 ≤ 2

2x1 + x2 ≤ 3
0≤ x1,0≤ x2.

These equations and inequalities lead to the following formulation and solution.

LINEAR AND QUADRATIC PROGRAMMING 187

> require(quadprog)

> Dmat = matrix(c(1,-1,-1,2),2,2)

> dvec = c(2,6)

> Amat = matrix(c(-1,-1,1,-2,-2,-1),2,3)

> bvec = c(-2,-2,-3)

>

> solve.QP(Dmat, dvec, Amat, bvec)

$solution

[1] 0.6666667 1.3333333

$value

[1] -8.222222

$unconstrained.solution

[1] 10 8

$iterations

[1] 3 0

$Lagrangian

[1] 3.1111111 0.4444444 0.0000000

$iact

[1] 1 2

Quadratic programming plays an important role in geometric optimization prob-
lems, such as the “enclosing ball problem” and “polytope distance problem,” or the
“separating hyperplane problem” that is essential for the technique of support vector
machines in machine learning.

Here we will look at finding a smallest circle in R2 enclosing ten given points
p1, . . . , p10. (Figure 7.8) Let the points be p1 = (0.30,0.21), etc., represented as
columns in the following matrix.
> C = matrix(

+ c(0.30, 0.08, 0.30, 0.99, 0.31, 0.77, 0.23, 0.29, 0.92, 0.14,

+ 0.21, 0.93, 0.48, 0.83, 0.69, 0.91, 0.35, 0.05, 0.03, 0.19),

+ nrow = 2, ncol = 10, byrow = TRUE)

-0.2 0.2 0.6 1.0

-0
.2

0.
2

0.
6

1.
0

x

+

Figure 7.8: Plot of smallest enclosing circle for ten points.

188 OPTIMIZATION

The theory of geometric optimization says we need to solve the following
quadratic programming problem: Minimize the quadratic form

xTCTCx−∑ pT
i pixi

with the constraints ∑xi = 1 and all xi ≥ 0. Then the point p = ∑ pixi is the center of
the ball, and the negative of the minimum value is the square of the radius.

Unfortunately, the matrix CTC is not positive definite. (Look at matrix D below
and compute its eigenvalues with eigen(D): eight of the ten eigenvalues are zero.)
Thus function solve.QP() cannot be applied. We will instead turn to ipop() in
package kernlab, an often used package and function.

For solving with ipop() we need to define D, d, A, and b.

> D = 2 * t(C) %*% C # D = 1/2 C’ C

> d = apply(C^2, 2, sum) # d = (p1’ p1,)

> A = matrix(rep(1, 10), 1, 10) # sum xi = 1

> b = 1; r = 0 # b <= A x <= b + r

> l = rep(0, 10); u = rep(1, 10) # l <= x <= u

ipop requires explicit lower and upper bounds for the variables as well as for the
inequalities. We can safely assume xi ≤ 1 because the xi are positive and their sum is
1. Now everything is in place to compute a solution.

> require(kernlab)

> sol = ipop(-d, D, A, b, l, u, r)

> x = sol@primal

> sum(x)

[1] 1

The center of the ball will be at p0 = ∑xi pi, that is
> p0 = C %*% x; p0

[,1]

[1,] 0.4495151

[2,] 0.4029843

To see the distance of all points to the proposed center, do the following:
Euclidean distance between p0 and all pi

> e = sqrt(colSums((C - c(p0))^2)); e

[1] 0.3360061 0.6155485 0.2000001 0.6021627 0.2831960

[5] 0.5077400 0.2996666 0.4785395 0.6155485 0.4622771

> r0 = max(e); r0

[1] 0.784569

To be convinced, we lay out the whole situation in a scatterplot.

> plot(C[1,], C[2,], xlim = c(-0.2, 1.2), ylim = c(-0.2, 1.2),

+ xlab = "x", ylab = "", asp = 1)

> grid()

Draw the center of the circle

> points(p0[1], p0[2], pch = "+", cex = 2)

MIXED-INTEGER LINEAR PROGRAMMING 189

Draw a circle with radius r0

> th = seq(0, 2*pi, length.out = 100)

> xc = p0[1] + r0 * cos(th)

> yc = p0[2] + r0 * sin(th)

> lines(xc, yc)

The circle cannot be made smaller because two points lie on the boundary on
opposite sides.

7.7 Mixed-integer linear programming

7.7.1 Mixed-integer problems

Imagine we need to solve the following linear programming task: Maximize

y = 500x1 + 450x2

subject to

6x1 + 5x2 ≤ 60
10x1 + 20x2 ≤ 150

x1 ≤ 8

and x1,x2 ≥ 0, but the variables x1,x2 need to be integers, for example because we
cannot break our product in smaller parts. If this problem is solved with lpSolve,
the solution will be x1 = 6 3

7 ,x2 = 4 2
7 (with y = 5142 6

7). Taking the integer parts, will
x1 = 6,x2 = 4 (with y = 4800) be the optimal solution in integers?

Fortunately, lpSolve, as well as all the other LP solvers mentioned in the previ-
ous section, are capable of solving mixed-integer linear programs where some or all
of the variables have to be binary (taking on only 0 or 1 as values) or integers. The
user has to explicitly declare which of the variables fall into these classes; all others
are still assumed to be positive reals.

> obj = c(500, 450)

> A = matrix(c(6, 5,

+ 10, 20,

+ 1, 0), ncol = 2, byrow = TRUE)

> b = c(60, 150, 8)

Declare which variables have to be integer (here all of them)

> int.vec = c(1, 2)

> soln = lp("max", obj, A, rep("<=", 3), b, int.vec = int.vec)

> soln; soln$solution

Success: the objective function is 4900

[1] 8 2

190 OPTIMIZATION

One can see that the solution (8,2) is better than the nearest integer solution (6,4),
and is not even a direct “neighbor” in the integer grid. That means guessing from the
unconstrained, real solution is not an appropriate step.

As another example, let us assume that x1 and x2 are allowed to be real, but the
second variable is semi-continuous, that is either x2 = 0 or x2 ≥ 3; it is not allowed
to take on values between 0 and 3. This constraint cannot be expressed as a linear
constraint. Instead, we introduce a new binary variable b that is assumed to be 0 if x2
is zero, and 1 if not.

So x2 ≥ 3b will guarantee that x3, if not 0, is greater than 3. Of course, if b = 0
then x2 shall be 0, too. This can be expressed with another constraint x2 ≤Mb where
M is some large enough constant, e.g., we can assume M = 20. (In the literature on
MILP, this is called the “big-M” trick.)

With variables x1,x2,b the set of constraints now look like

6x1 + 5x2 ≤ 60
10x1 + 20x2 ≤ 150

x1 ≤ 8
−x2 + 3b≤ 0
x2−20b≤ 0

and thus

> obj = c(500, 400, 0)

> A = matrix(c(6, 5, 0,

+ 10, 20, 0,

+ 1, 0, 0,

+ 0, -1, 3,

+ 0, 1, -20), ncol = 3, byrow = TRUE)

> b = c(60, 150, 8, 0, 0)

> int.vec = c(3)

> soln = lp("max", obj, A, rep("<=", 5), b, int.vec = int.vec)

> soln; soln$solution

Success: the objective function is 4950

[1] 7.5 3.0 1.0

Semi-continuous variables and the “big-M” trick are often-used elements of mod-
eling and solving linear programming tasks.

7.7.2 Integer programming problems

If all variables are assumed to be binary or integer, one speaks about integer pro-
gramming problems. Here are some problems in discrete optimization that can be
solved applying an integer programming approach.

MIXED-INTEGER LINEAR PROGRAMMING 191

7.7.2.1 Knapsack problems

Even the famous class of knapsack problems can be solved using integer program-
ming. As an example, a peddler wants to fill a knapsack of weight capacity 105 with
items that have the following values and weights, so as to maximize his profit:
> v = c(15, 100, 90, 60, 40, 15, 10, 1) # value of items

> w = c(2, 20, 20, 30, 40, 30, 60, 10) # weight of items

> C = 105 # maximum capacity

> M = matrix(w, nrow=1)

> L = lp("max", v, M, "<=", 105, binary.vec = 1:8)

> L

Success: the objective function is 280

> (inds = which(L$solution == 1)) # solution indices

[1] 1 2 3 4 6

> sum(v[inds]) # total value

[1] 280

> sum(w[inds]) # used capacity

[1] 102

With binary.vec = 1:8 all variables are forced to be binary. If the i-th variable
is 1, it gets packed into the knapsack, otherwise not. inds represents all indices of
items getting packed, so items 5, 7, and 8 will not be taken along.

7.7.2.2 Transportation problems

Consider a transportation problem with two origins and three destinations, for exam-
ple three markets that have to be supplied from two production sites. The supplies
at sites are 300 and 200 units, respectively, while at the markets the demands for
this product are 150, 250, and 100, respectively. The transportation costs per unit are
shown in the cost matrix C:

> C = matrix(c(10, 70, 40,

+ 20, 30, 50), nrow = 2, byrow=TRUE)

where C[i, j] represents the cost to deliver one unit of this product from the i-th
site to the j-th market.

We could attempt to model the problem with binary variables, but fortunately,
lpSolve provides function lp.transport() to solve this problem for us. What is
needed is a formulation of the constraints given above. For the production sites the
sums per row (i.e., per site) are smaller or equal to 300 and 200,

> row.dir = rep("<=", 2)

> row.rhs = c(300, 200)

while the requests per column sum (i.e., per market) are greater or equal to 150, 250,
and 100,

192 OPTIMIZATION

> col.dir = rep(">=", 3)

> col.rhs = c(150, 250, 100)

This is enough information for lp.transport() to get started:
> require(lpSolve)

> T = lp.transport(C, "min", row.dir, row.rhs, col.dir, col.rhs)

> T

Success: the objective function is 15000

> T$solution

[,1] [,2] [,3]

[1,] 150 50 100

[2,] 0 200 0

The solution states that 150 units shall be brought from site 1 to market 1, 50 to
market 2, and 100 to market 3, while 200 units shall be brought from site 2 to market
2. The total cost can be calculated explicitly with
> sum(C * T$solution)

[1] 15000

7.7.2.3 Assignment problems

Assume there are five machines to be assigned five jobs. The numbers in the follow-
ing matrix Mi j indicate the costs for doing job j on machine i. How to assign jobs to
machines to minimize costs? The matrix M may be given as
> M <- matrix(c(NA, 8, 6, 12, 1,

+ 15, 12, 7, NA, 10,

+ 10, NA, 5, 14, NA,

+ 12, NA, 12, 16, 15,

+ 18, 17, 14, NA, 13), 5, 5, byrow = TRUE)

where NA denotes that this job is not allowed on this machine. To make the matrix M
fully numerical, replace all NAs by a large value: 100 should be enough.
> M[is.na(M)] = 100

Again, we could set up a model using binary variables to solve the problem. The
function lp.assign in lpSolve does this for us automatically, thus
> A = lp.assign(M)

> A

Success: the objective function is 51

> A$solution

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 1

[2,] 0 0 1 0 0

[3,] 0 0 0 1 0

[4,] 1 0 0 0 0

[5,] 0 1 0 0 0

Job 1, for instance, will be assigned to machine 4, job 2 to machine 5, etc., with a
total cost of 51 for all five jobs together.

MIXED-INTEGER LINEAR PROGRAMMING 193

7.7.2.4 Subsetsum problems

The subsetsum problem can be formulated as follows: Given a set of (positive) num-
bers, is there a subset such that the sum of numbers in this subset equals a prescribed
value? We will also require that the number of elements in this subset is fixed.

During a shopping trip, a man has bought 30 items with the following known
prices (identified by price tags stuck to them) in, say, euros:
> p = c(99.28, 5.79, 63.31, 89.36, 7.63, 30.77, 23.54, 84.24,

93.29, 53.47, 88.19, 91.49, 34.46, 52.13, 43.09, 76.40,

21.42, 63.64, 28.79, 73.03, 8.29, 92.06, 26.69, 89.07,

10.03, 10.24, 40.29, 81.76, 49.01, 3.85)

He inspects a receipt totaling 200.10 euros for four items, but not indicating which
ones or for what single prices they were sold. Can he find out which items are covered
by this receipt? (If a reader thinks this should be easy, he is invited to find out by
hand.)

To avoid problems with comparing floating point numbers for equality, we will
convert prices to cents, so all numbers are integers.
P = as.integer(100*p)

We introduce 30 binary variables b = (bi) indicating whether the i-th item belongs
to the solution or not. There are two inequalities describing the problem:

30

∑
i=1

bi = 4

30

∑
i=1

biPi ≤ 20010

the first one saying we want exactly four items, the second that the price for these
four items shall be below 200.10 euros, but as close as possible. The reason is that
a linear programming solver will maximize a linear function, not exactly reaching a
certain value. But if the maximal value found by the solver is less than 20010, we
know for sure that there are no four item prices exactly summing up to this value.

The objective function is also ∑biPi; that is, we use the same linear function as
objective and as inequality. Putting all the pieces together:
> obj = P

> M = rbind(rep(1, 30), P)

> dir = c("==", "<=")

> rhs = c(4, 20010)

> binary.vec = 1:40

> require(lpSolve)

> (L = lp("max", obj, M, dir, rhs, binary.vec = binary.vec))

Success: the objective function is 20010

This shows that there are four items whose prices add up to 200.10 euros, identi-
fying their indices and single prices with

194 OPTIMIZATION

> inds = which(L$solution == 1)

> inds; P[inds]/100; sum(P[inds])/100

[1] 7 9 20 26

[1] 23.54 93.29 73.03 10.24

[1] 200.1

Note that there may be more than one combination of four prices that yield this
total, because an optimization solver stops when it has found a solution, it does not try
to produce all of the possible solutions. To make sure, remove one of those indices,
for example 26, and try to find another combination of four prices with this same
sum. In the following, we set P[26] to some high value, e.g., 21000, so it will not be
a candidate for the sum. Then repeat the procedure from above.

> i = 26

> Q = P

> Q[i] = 21000

> N = rbind(rep(1, 30), Q)

> LL = lp("max", obj, N, dir, rhs, binary.vec = binary.vec)

> inds = which(LL$solution == 1)

> inds; Q[inds]/100; sum(Q[inds])/100

[1] 6 16 24 30

[1] 30.77 76.40 89.07 3.85

[1] 200.09

Without item 26 there is no subset of four prices adding up to 200.10. We try indices
20 or 9 (7 has not to be checked then), with the same negative result. Therefore we
can safely conclude that exactly the goods with prices 23.54, 93.29, 73.03, and 10.24
are covered on this receipt!

7.8 Case study

7.8.1 Monte Carlo simulation of the 2D Ising model

The Ising model, named after the German physicist Ernst Ising, was developed as a
statistical mechanical model of ferromagnetism. In its most common form it consists
of discrete variables (usually ±1) that represent spins arranged on a lattice. Each
spin can interact with its neighbors with an interaction energy J (taken = 1 in the
calculation that follows). The 2D Ising model on a square lattice is one of the simplest
statistical mechanical models to display a phase transition. (The 1D model does not,
though it still has many interesting properties.)

Lars Onsager developed an analytical solution to the 2D Ising model with pe-
riodic boundary conditions in 1942, an achievement acclaimed as one of the high
points of theoretical physics in modern times. For our purposes in this chapter, the
2D Ising model provides a useful example of an optimization problem: i.e., find-
ing the equilibrium position (minimum free energy) of an interacting spin system
at a given temperature. It thereby has some similarity with the simulated annealing
(SANN) method.

CASE STUDY 195

In developing R code to analyze the 2D Ising model, we follow the Fortran treat-
ment of Larrimore3 who in turn adapted the Basic code in Chandler (1987). The
treatment implements importance sampling via the Metropolis algorithm. The pro-
cedure has three parts:
• Choose a spin randomly, and flip it
• Calculate the energy difference4E

• If4E < 0, the new state is favorable and is accepted. Otherwise a random number
p between 0 and 1 is generated, and if exp(−β4E) > p, the new state is accepted.
(β = 1/kBT , where kB is the Boltzmann constant and T the Kelvin temperature.)
Equivalently, taking logs of both sides, the move is accepted if −β4E) > log(p).
The computationally intensive part of this process comes from having to repeat

these steps enough times that equilibrium should have been achieved, then repeat
many more times to get adequate statistical sampling at the given T. For the rather
small (12×12) lattice considered below, equilibration requires about 105 steps.

After a suitable number of equilibration and statistical averaging steps have been
taken, we can calculate the average energy 〈E〉 and magnetization 〈M〉 directly by
summing over the lattice. By calculating the mean-square energy

〈
E2
〉

and magneti-
zation

〈
M2
〉
, we use the thermodynamic relations

CV =
β

T

[〈
E2
〉
−〈E〉2

]
(7.8)

and
χ = β

[〈
M2
〉
−〈M〉2

]
(7.9)

to calculate the heat capacity CV and magnetic susceptibility χ from the variances of
E and M.

We begin by setting the parameters of the simulation. Set up a square lattice (ma-
trix) of spins A with nr rows and nc columns. The calculation runs rather slowly in R
(for greater speed use Fortran or C) so we use a small 12×12 lattice. An even number
of rows and columns assures consistency with the periodic boundary conditions. At
each temperature we make npass random choices of a spin, flipping each and testing
the energy of the resulting configuration against the Metropolis criterion. After the
first nequil of these passes it is assumed that the system has reached equilibrium, so
the remaining passes are used to obtain averages of the energy, magnetization, and
their squares.
> nr = 12; nc = 12 # Number of rows and columns

> A = matrix(nrow = nr, ncol = nc)

> npass = 2e5 # Number of passes for each temperature

> nequil = 1e5 # Number of equilibration steps for each T

Set the upper and lower temperatures to be scanned, and the interval between
them, thus determining the number of temperatures to be scanned. It is known that

3http://fraden.brandeis.edu/courses/phys39/simulations/Student%20Ising%20
Swarthmore.pdf

196 OPTIMIZATION

the phase transition temperature (critical temperature) for this model is near TC ≈ 2.3,
so we choose limits that bracket this value.
> T_hi = 3 # Temperature to start scan at

> T_lo = 1.5 # Temperature to finish scan at

> dT = 0.1 # Temperature scanning interval

> nscans = as.integer((T_hi - T_lo)/dT) + 1

Set up a table (matrix M) to accept the results at the end of each temperature
scan.
> # Initialize results table

> M = matrix(nrow = nscans, ncol = 5, byrow=TRUE,

+ dimnames=list(rep("",nscans),c("T","E_av","Cv","Mag_av",

+ "Mag_sus")))

Construct a function Ann(A,m,n) that defines the nearest neighbors of the (m,n)
spin in A, with special provision for edges to accommodate periodic boundary con-
ditions.
> Ann = function(A, m, n) {

+ if (m == nr) Ann1 = A[1,n] else Ann1 = A[m+1,n] # bottom

+ if (n == 1) Ann2 = A[m,nc] else Ann2 = A[m,n-1] # left

+ if (m == 1) Ann3 = A[nr,n] else Ann3 = A[m-1,n] # top

+ if (n == nc) Ann4 = A[m,1] else Ann4 = A[m,n+1] # right

+ return(Ann1 + Ann2 + Ann3 + Ann4)

+ }

At each temperature we start the calculation anew: Initialize the variables in units
chosen so that the thermal energy βT equals one, as does the spin interaction energy
J (which therefore doesn’t appear explicitly in the calculation). Set the energy and
magnetization to zero.
> for (isc in 1:nscans) { # T scan loop

+ temp = T_hi - dT*(isc - 1)

+ # Initialize variables

+ beta = 1/temp

+ oc = 0 # output count

+ E_av = 0

+ E2_av = 0

+ mag_av = 0

+ mag2_av = 0

Set up the lattice in a checkerboard configuration with alternating spins pointing
up and down. (Other initial configurations are possible, but yield the same equilib-
rium results.)
+ # Set up initial checkerboard spin configuration

+ A[1,1] = 1

+ for (i in 1:(nr - 1)) A[i+1,1] = -A[i,1]

+ for (j in 1:(nc - 1)) A[,j+1] = -A[,j]

CASE STUDY 197

Begin passes at each temperature, using the Metropolis algorithm to accept or
reject a trial. The first nequil passes are equilibration steps. The remainder are used
to accumulate statistics on energy and magnetization.
+ for (ipass in 0:npass) { # Monte Carlo passes at T

+ if (ipass > nequil) {

+ oc = oc + 1 # output count

+ mag = sum(A)/(nr*nc)

+ mag_av = mag_av + mag

+ mag2_av = mag2_av + mag^2

+ E = 0

+ for (m in 1:nr) {

+ for (n in 1:nc) {

+ E = E - A[m,n]*Ann(A,m,n)

+ }

+ }

+ E = E/(2*nr*nc)

+ E_av = E_av + E

+ E2_av = E2_av + E^2

+ }

+ # Choose a random spin to change

+ m = sample(nr,1,replace=TRUE)

+ n = sample(nc,1,replace=TRUE)

+ ts = -A[m,n] # Flip sign of spin

+ dU = -2*ts*Ann(A,m,n)

+ log_eta = log(runif(1))

+ if(-beta*dU > log_eta) A[m,n] = ts

+ } # end MC passes at T

Fill a row with the temperature, energy, and magnetization results at that temper-
ature.
+ M[isc,1] = temp

+ M[isc,2] = E_av/oc

+ M[isc,3] = beta^2*(E2_av/oc - (E_av/oc)^2)

+ M[isc,4] = abs(mag_av/oc)

+ M[isc,5] = beta*(mag2_av/oc - (mag_av/oc)^2)

+ cat(c(temp, mag_av,mag2_av,E_av,E2_av),"\n") # not shown

+ } # end T scans

Print and plot the results.
> M # print result (deleted from output)

> # plot results

> par(mar=c(4,4,1.5,1.5),mex=.8,mgp=c(2,.5,0),tcl=0.3)

> par(mfrow=c(2,2))

> plot(M[,1], M[,2], xlab="T", ylab="<E>")

> plot(M[,1], M[,3], xlab="T", ylab="<Cv>")

> plot(M[,1], M[,4], xlab="T", ylab="<M>")

198 OPTIMIZATION

1.5 2.0 2.5 3.0

-1
.8

-1
.4

-1
.0

T

<E
>

1.5 2.0 2.5 3.0

0.
00
2

0.
00
6

0.
01
0

T
<C
v>

1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T

<M
>

1.5 2.0 2.5 3.0

0.
00

0.
04

0.
08

0.
12

T

<c
hi
>

Figure 7.9: Plots of thermodynamic and magnetic functions for 2D Ising model.

> plot(M[,1], M[,5], xlab="T", ylab="<chi>")

It took nearly 38 minutes to complete the scan of 16 temperatures on a 12× 12
array, with 2×105 passes at each T, of which 1×105 are equilibration steps. It takes
about 105 steps to show the characteristic behavior of the thermodynamic functions
without undue noise.

The results are as expected (Figure 7.9): The energy increases with T , while the
magnetization decreases sharply near the critical temperature TC and tends to zero
above that temperature. The specific heat and magnetic susceptibility, both being
related to fluctuations in the system, have peaks around TC.

Chapter 8

Ordinary differential equations

Differential equations are ubiquitous in science and engineering, since they describe
the rate of change of a system with time, position, or some other independent vari-
able. It is conventional to classify differential equations according to certain charac-
teristics.

Ordinary differential equations (ODEs) depend on a single independent variable,
such as time; while partial differential equations (PDEs) depend on several indepen-
dent variables, such as spatial coordinates as well as, perhaps, time. In this chapter
we treat ODEs; PDEs are the subject of the next chapter.

First order differential equations involve only first derivatives of the dependent
variables, while second and higher order differential equations involve second and
higher order derivatives. In numerical solution of differential equations, all equations
are reduced to first order by the expedient of defining, e.g., dy/dt = y1 and then
d2y/dt2 = dy1/dt.

Initial value problems define the starting values of the variables, while boundary
value problems specify the beginning and ending values of the variables.

Linear differential equations are linear in the dependent variables, while non-
linear differential equations involve higher or nonintegral powers. Most analytically
soluble differential equations are linear, but numerical solutions can cope equally
well with nonlinear equations.

R, through contributed packages, has powerful tools to numerically solve differ-
ential equations. The DifferentialEquations task view at cran.r-project.org/
web/views/DifferentialEquations.html provides a useful overview. These
are some of the most important packages:

• deSolve provides “functions that solve initial value problems of a system of
first-order ordinary differential equations (ODE), of partial differential equations
(PDE), of differential algebraic equations (DAE), and of delay differential equa-
tions. The functions provide an interface to the FORTRAN functions lsoda,
lsodar, lsode, lsodes of the ODEPACK collection, to the FORTRAN func-
tions dvode and daspk and a C-implementation of solvers of the Runge–Kutta
family with fixed or variable time steps. The package contains routines designed
for solving ODEs resulting from 1-D, 2-D and 3-D partial differential equations
(PDE) that have been converted to ODEs by numerical differencing.” The vignette
“Package deSolve: Solving Initial Value Differential Equations in R” is available

199

200 ORDINARY DIFFERENTIAL EQUATIONS

as a pdf file on the CRAN > Packages site, and should be consulted for orienta-
tion and examples. The help pages for the individual functions provide details and
more examples.

• bvpSolve provides “functions that solve boundary value problems (BVP) of sys-
tems of ordinary differential equations (ODE). The functions provide an interface
to the FORTRAN functions twpbvpC and colnew and an R-implementation of
the shooting method.”

• ReacTran provides “routines for developing models that describe reaction and
advective-diffusive transport in one, two or three dimensions. Includes transport
routines in porous media, in estuaries, and in bodies with variable shape.”

• rootSolve contains “routines to find the root of nonlinear functions, and to
perform steady-state and equilibrium analysis of ordinary differential equations
(ODE). Includes routines that: (1) generate gradient and Jacobian matrices (full
and banded), (2) find roots of non-linear equations by the Newton–Raphson
method, (3) estimate steady-state conditions of a system of (differential) equations
in full, banded or sparse form, using the Newton–Raphson method, or by dynam-
ically running, (4) solve the steady-state conditions for uni-and multicomponent
1-D, 2-D, and 3-D partial differential equations, that have been converted to ODEs
by numerical differencing (using the method-of-lines approach). Includes fortran
code.”

• PBSddesolve “solves systems of delay differential equations.” (This capability
also exists in deSolve.)

• FME (A Flexible Modelling Environment for Inverse Modelling, Sensitivity, Iden-
tifiability, Monte Carlo Analysis) “provides functions to help in fitting models to
data, to perform Monte Carlo, sensitivity and identifiability analysis. It is intended
to work with models written as a set of differential equations that are solved either
by an integration routine from package deSolve, or a steady-state solver from
package rootSolve. However, the methods can also be used with other types of
functions.”

These packages, and the functions in them, are explained with useful exam-
ples in their help pages and in the book Solving Differential Equations in R by
Soetaert, Cash and Mazzia, Springer, 2012. Additional information can be found
on the website of the special interest group about dynamic modeling with R,
https://stat.ethz.ch/pipermail/r-sig-dynamic-models/. This site can
also be reached from r-sig-dynamic-models@r-project.org>Mailing lists.

8.1 Euler method

We can numerically solve ODEs without using packages, by manually coding the
steps. This is not as efficient as using a suitable package, nor are the results likely to
be as good, but the exercise is instructive. We begin by illustrating the Euler method.
The Euler method is the simplest method for numerically solving differential equa-
tions: the position at time t + dt is computed from the position at t and the velocity at
t. The error inherent in this approach is first order in dt, hence the method is often not

EULER METHOD 201

very accurate except for very small dt, in which case numerical round-off introduces
another kind of error. It often turns out, nonetheless, that the Euler method is good,
or at least adequate, for some small problems.

8.1.1 Projectile motion

We look, for example, at projectile motion as exemplified by the path of a batted ball
(After VanWyk, p. 24). This example also reminds us how to convert between units.
The motion of the ball is determined by its velocity v0 and angle θ0 as it leaves the
bat, its mass m with gravity (coefficent g) pulling it back to earth, and its frictional
resistance in the air, which in turn is determined by its area A, the density of air ρ ,
and its drag coefficient Cdrag. In Cartesian coordinates, the equations of motion are

m
d2x
dt2 =−1

2
ρACdragvvx (8.1)

m
d2y
dt2 =−mg− 1

2
ρACdragvvy (8.2)

where the drag force is 1
2 ρACdragv2.

We establish base SI units and conversions from other systems of units.
> kg. = 1; s. = 1; m. = 1

> lb. = 0.4536*kg.; oz. = 1/16*lb.; hr. = 3600*s.

> ft. = 0.3048*m.; mile. = 5280*ft.; in. = 1/12*ft.;

> degree = pi/180

Then we convert various quantities pertinent to the calculation into SI units.
> v0.ball = 130*mile./hr. ; v0 = v0.ball/(m./s.)

> diam.ball = 2.9*in. ; diam = diam.ball/m.

> area = pi*(diam/2)^2

> air.density = 0.077*lb./ft.^3 ; dens = air.density/(kg./m.^3)

> mass.ball = 5.1*oz.; mass = mass.ball/kg.

> g = 9.806*m./s.^2

> Cdrag = 0.4

> C = 0.5*dens*area*Cdrag/mass

Set initial conditions ...
> x0=0 #homeplate

> y0 = 4*ft. # a high fastball

> theta0 = 30*degree # angle off the bat

> vx0 = v0*cos(theta0) # initial velocity in x-direction

> vy0 = v0*sin(theta0) # initial velocity in y-direction

... and initialize position vectors with the initial conditions.
> x = x0; y = y0; vx = vx0; vy= vy0; v = v0

Set the clock time to 0, and set the total time and the measurement interval.

202 ORDINARY DIFFERENTIAL EQUATIONS

> t0 = 0

> sec = t0

> dt = 0.1 # seconds

Now solve the equations of motion using the simple Euler method, stopping when
the ball hits the ground (y < 0).
> i=1

> while (y[i] >= 0) {

+ dx = vx[i]*dt # increment in x

+ dy = vy[i]*dt # increment in y

+ v[i] = sqrt(vx[i]^2 + vy[i]^2) # total speed

+ dvx = -C*v[i]*vx[i]*dt # air resistance

+ dvy= (-g - C*v[i]*vy[i])*dt # gravity + air resistance

+ x[i+1] = x[i] + dx

+ y[i+1] = y[i] + dy

+ vx[i+1] = vx[i] + dvx

+ vy[i+1] = vy[i] + dvy

+ v[i+1] = sqrt(vx[i+1]^2 + vy[i+1]^2)

+ sec[i+1] = sec[i] + dt

+ i=i+1

+ }

Tabulate results for the x and y coordinates and velocity as functions of time in
the matrix mat, giving the columns appropriate names.
> x = round(x/ft.,0)

> y = round(y/ft.,0)

> v = round(v/(ft./s.),1)

> mat = cbind(sec, x,y,v)

> colnames(mat) = c("t/s", "x/ft", "y/ft", "v/(ft/s)")

Select and print the results for every fourth time step
> n = length(sec)

> show = seq(1,n,4)

> mat[show,]

t/s x/ft y/ft v/(ft/s)

[1,] 0.0 0 4 190.7

[2,] 0.4 62 38 156.7

[3,] 0.8 116 62 132.3

[4,] 1.2 163 79 114.3

[5,] 1.6 205 89 101.0

[6,] 2.0 244 93 91.5

[7,] 2.4 279 92 85.2

[8,] 2.8 312 86 81.6

[9,] 3.2 343 75 80.3

[10,] 3.6 371 60 80.8

[11,] 4.0 398 41 82.6

[12,] 4.4 422 18 85.2

EULER METHOD 203

If the fence is 20 feet high at 370 feet from home plate, the ball clears the fence
with room to spare. This application of the Euler method converges satisfactorily, as
can be verified by halving the time increment dt and re-running the simulation.

8.1.2 Orbital motion

Next we use the Euler method to calculate the dynamics of the orbit of the Earth
around the Sun, assuming a circular orbit. (Adapted from S. VanWyk, “Computer
Solutions in Physics,” pp. 3–6.) We find that the calculated orbit is not stable, but
drifts with time because the position and velocity get progressively out of phase with
one another.

The equations of motion, combining Newton’s second law with the law of gravity,
can be expressed in Cartesian coordinates as

d2x
dt2 =

GMsunx
(x2 + y2)3/2 , (8.3)

d2y
dt2 =

GMsuny
(x2 + y2)3/2 . (8.4)

We set the physical parameters: gravitational constant G and Sun’s mass Msun.
> G = 3600^2*6.673e-20

> Msun = 1.989e30

> GM = G*Msun

Next we specify the initial values of the x and y positions and velocities.
> x0 = 149.6e6; vx0 = 0

> y0 = 0; vy0 = 29.786*3600

We set the total elapsed time at 8800 hours, approximately 1 year, updating the
calculation every hour.
> tmin = 0; tmax = 8800; dt = 1

> hrs = seq(tmin, tmax, dt)

> n = (tmax - tmin)/dt + 1 # Maximum number of updates

For the heart of the calculation, we set the first component of each vector to its
initial value, then update the vectors according to the Euler scheme until the maxi-
mum time is reached.
> x = x0; vx = vx0; y = y0; vy = vy0

> for(i in 2:n) {

+ dx = vx[i-1]*dt

+ dvx = -GM*x[i-1]/(x[i-1]^2 + y[i-1]^2)^1.5*dt

+ dy = vy[i-1]*dt

+ dvy = -GM*y[i-1]/(x[i-1]^2 + y[i-1]^2)^1.5*dt

+ x[i] = x[i-1] + dx

+ vx[i] = vx[i-1] + dvx

+ y[i] = y[i-1] + dy

+ vy[i] = vy[i-1] + dvy

+ }

204 ORDINARY DIFFERENTIAL EQUATIONS

For presentation purposes, we round each value to three figures after the decimal
point.
> r = round(sqrt(x^2 + y^2)*1e-8,3)

> v = round(sqrt(vx^2 + vy^2)/3600,3)

> x = round(x*1e-8,3)

> y = round(y*1e-8,3)

We select 23 of the 8800 time points, spaced 400 time units apart, and assign values
of the hour, x and y positions, orbital radius, and velocity to the indicated vectors.
> show = seq(1,n,400)

>

> hrsdisp = hrs[show]

> xdisp = x[show]

> ydisp = y[show]

> rdisp = r[show]

> vdisp = v[show]

We then combine the column vectors into the matrix mat, label each column, and
print the results using five digits to get three after the decimal point.
> options(digits=5)

> mat = cbind(hrsdisp,xdisp,ydisp,rdisp,vdisp)

> colnames(mat) = c("hrs", "x/1e8 km", "y/1e8 km",

"r/1e8 km", "v km/ s")

> mat

hrs x/1e8 km y/1e8 km r/1e8 km v km/ s

[1,] 0 1.496 0.000 1.496 29.786

[2,] 400 1.435 0.423 1.496 29.789

[3,] 800 1.257 0.812 1.496 29.791

[4,] 1200 0.976 1.134 1.497 29.792

[5,] 1600 0.616 1.364 1.497 29.791

[6,] 2000 0.205 1.483 1.497 29.787

[7,] 2400 -0.222 1.482 1.498 29.781

[8,] 2800 -0.632 1.359 1.499 29.772

[9,] 3200 -0.990 1.127 1.500 29.761

[10,] 3600 -1.268 0.803 1.501 29.748

[11,] 4000 -1.444 0.414 1.502 29.734

[12,] 4400 -1.503 -0.009 1.503 29.719

[13,] 4800 -1.441 -0.431 1.504 29.704

[14,] 5200 -1.263 -0.818 1.505 29.690

[15,] 5600 -0.984 -1.140 1.506 29.677

[16,] 6000 -0.626 -1.370 1.507 29.666

[17,] 6400 -0.218 -1.492 1.507 29.657

[18,] 6800 0.208 -1.494 1.508 29.651

[19,] 7200 0.617 -1.377 1.508 29.648

[20,] 7600 0.977 -1.150 1.509 29.647

[21,] 8000 1.259 -0.832 1.509 29.648

IMPROVED EULER METHOD 205

0 1 2 3 4 5

0
20

40
60

80
10
0

time

p

Figure 8.1: Exponentially decaying population calculated by the improved Euler method.

[22,] 8400 1.442 -0.447 1.509 29.650

[23,] 8800 1.509 -0.027 1.509 29.653

A proper solution would maintain a constant radius and velocity, but the Euler
method does not, even though it uses 8800 very small time steps in this example.

8.2 Improved Euler method

The improved Euler method, does a better—but not perfect—job because the incre-
ment at each step is calculated as the mean of the increments at t and d + dt. We first
illustrate the procedure with a simple exponential decay example (Figure 8.1).
> p0 = 100 # initial population value

> k = 1 # rate parameter

> tmin=0;tmax=5;dt=0.1 # Beginning and end times and increment

> time = seq(tmin,tmax,dt) # vector of times

> n = (tmax-tmin)/dt + 1 # number of evaluations of p

> p = p0 # initialize p vector

> for (i in 2:n) {

+ dpa = -k*p[i-1]*dt

+ pa = p[i-1] + dpa

+ dpb = -k*pa*dt

+ dp = (dpa + dpb)/2

+ p[i] = p[i-1] + dp

+ }

> plot(time, p, type = "l")

We now apply the improved Euler method to the orbital problem. Note that the
calculation below uses only one tenth as many time steps as the simple Euler method,
but achieves better results.

As before, we begin by defining parameters and initializing the variables.
> # Improved Euler

206 ORDINARY DIFFERENTIAL EQUATIONS

> G = 3600^2*6.673e-20

> Msun = 1.989e30

> GM = G*Msun

> x0 = 149.6e6; vx0 = 0

> y0 = 0; vy0 = 29.786*3600

With the improved Euler method, we use a time step corresponding to 10 hours.
> tmin = 0; tmax = 8800; dt = 10

> hrs = seq(tmin, tmax, dt)

> n = (tmax - tmin)/dt + 1

After starting the position and velocity vectors, we obtain first approximations
to their values after each time step, by adding calculated increments to the previous
values.
> x = x0; vx = vx0; y = y0; vy = vy0

> for(i in 2:n) {

+ dxa = vx[i-1]*dt

+ dvxa = -GM*x[i-1]/(x[i-1]^2 + y[i-1]^2)^1.5*dt

+ dya = vy[i-1]*dt

+ dvya = -GM*y[i-1]/(x[i-1]^2 + y[i-1]^2)^1.5*dt

+

+ xa = x[i-1] + dxa

+ vxa = vx[i-1] + dvxa

+ ya = y[i-1] + dya

+ vya = vy[i-1] + dvya

We then calculate new estimates of the increments, and average them with the previ-
ous estimates.
+ dxb = vxa*dt

+ dvxb = -GM*xa/(xa^2 + ya^2)^1.5*dt

+ dyb = vya*dt

+ dvyb = -GM*ya/(xa^2 + ya^2)^1.5*dt

+

+ dx = (dxa + dxb)/2

+ dvx = (dvxa + dvxb)/2

+ dy = (dya + dyb)/2

+ dvy = (dvya + dvyb)/2

The averaged increments are added to the previous values to get values at the next
time points.
+ x[i] = x[i-1] + dx

+ vx[i] = vx[i-1] + dvx

+ y[i] = y[i-1] + dy

+ vy[i] = vy[i-1] + dvy

+ }

The remainder of the calculation proceeds as in the simple Euler example above.

IMPROVED EULER METHOD 207

> r = round(sqrt(x^2 + y^2)*1e-8,3)

> v = round(sqrt(vx^2 + vy^2)/3600,3)

> x = round(x*1e-8,3)

> y = round(y*1e-8,3)

> show = seq(1,n,40)

> hrsdisp = hrs[show]

> xdisp = x[show]

> ydisp = y[show]

> rdisp = r[show]

> vdisp = v[show]

> options(digits=5)

> mat = cbind(hrsdisp,xdisp,ydisp,rdisp,vdisp)

> colnames(mat) = c("hrs", "x/1e8 km", "y/1e8 km",

+ "r/1e8 km", "v km/ s")

> mat

hrs x/1e8 km y/1e8 km r/1e8 km v km/ s

[1,] 0 1.496 0.000 1.496 29.786

[2,] 400 1.435 0.423 1.496 29.786

[3,] 800 1.257 0.812 1.496 29.786

[4,] 1200 0.976 1.134 1.496 29.786

[5,] 1600 0.615 1.364 1.496 29.785

[6,] 2000 0.205 1.482 1.496 29.785

[7,] 2400 -0.223 1.479 1.496 29.785

[8,] 2800 -0.632 1.356 1.496 29.784

[9,] 3200 -0.990 1.122 1.496 29.784

[10,] 3600 -1.267 0.796 1.496 29.784

[11,] 4000 -1.440 0.406 1.496 29.784

[12,] 4400 -1.496 -0.018 1.496 29.784

[13,] 4800 -1.430 -0.440 1.496 29.784

[14,] 5200 -1.247 -0.827 1.496 29.784

[15,] 5600 -0.962 -1.145 1.496 29.784

[16,] 6000 -0.599 -1.371 1.496 29.784

[17,] 6400 -0.187 -1.484 1.496 29.785

[18,] 6800 0.240 -1.477 1.496 29.785

[19,] 7200 0.648 -1.348 1.496 29.785

[20,] 7600 1.003 -1.110 1.496 29.786

[21,] 8000 1.276 -0.781 1.496 29.786

[22,] 8400 1.445 -0.389 1.496 29.786

[23,] 8800 1.496 0.036 1.496 29.786

The orbital results are better with the improved Euler method, but the radius and
velocity are still not quite constant.

208 ORDINARY DIFFERENTIAL EQUATIONS

8.3 deSolve package

There are many other more-or-less elementary algorithms to solve systems of ODEs,
most of them elaborations of the improved Euler or Runge–Kutta approaches; but it
is most useful to go directly to the more powerful methods employed in the deSolve
package.

The central function in deSolve for solving a system of ODEs is ode(), which
is a wrapper around 17(!) specific ODE solvers, each of which can be specified de-
pending on the problem under consideration. ode() is called by
> ode(y, times, func, parms, method, ...)

where
• y is a vector of initial values for the dependent variables,
• times is the sequence of times at which output is desired (starting with the initial

time),
• func is the function that computes the derivatives in the ODE system. The return

value of func should be a list, whose first element is a vector containing the
derivatives of y with respect to time, and whose next elements (if there are any)
are global values that are required at each point in times. The derivatives should
be specified in the same order as the state variables y.

• parms is the list of parameters passed to func.
• method is a string containing one of the integration methods: “lsoda”,

“lsode”,“lsodes”, “lsodar”, “vode”, “daspk”, “euler”, “rk4”, “ode23”,
“ode45”, “radau”, “textttbdf”, “bdf d”, “adams”, “impAdams”, “impAdams d”,
“iteration”. lsoda is the default.

• . . . represents additional arguments passed to the integrator or the method.
Solvers in the deSolve class yield a matrix with the number of rows equal to the

number of elements in the times vector. The first column is the time value and the
next columns are the values of the elements of the y vector at each time. If global
values were returned in the second element of the list returned by func, their values
will follow. If the initial values in the vector y are named, the names will label the
columns of the output matrix.

Before delving deeper into the details of ode and its methods, let’s demonstrate
how it handles our problem of the Earth revolving in a circular orbit around the Sun.
Note that we use a time increment dt of 400 hr, compared to 10 hr for Euler and 100
hr for improved Euler. However, this does not mean that the step is 40 times longer in
lsoda than in Euler, since the step size in lsoda can vary as the calculation proceeds.

We load the deSolve package (first installing it if that has not already been done),
then go through the initial steps of defining parameters, initializing position and ve-
locity variables, and specifying the time sequence for the calculation.
> install.packages("deSolve")

> require(deSolve)

>

DESOLVE PACKAGE 209

> # Compute parameter

> G = 3600^2*6.673e-20

> Msun = 1.989e30

> GM = G*Msun

> parms = GM

>

> # Initialize variables

> x0 = 149.6e6; vx0 = 0

> y0 = 0; vy0 = 29.786*3600

>

> # Set time sequence

> tmin = 0; tmax = 8800; dt = 400

> hrs = seq(tmin, tmax, dt)

We next define the function that computes the desired derivatives and returns
them in a list.
> orbit = function(t,y,GM) {

+ dy1 = y[2]

+ dy2 = -GM*y[1]/(y[1]^2+y[3]^2)^1.5

+ dy3 = y[4]

+ dy4 = -GM*y[3]/(y[1]^2+y[3]^2)^1.5

+ return(list(c(dy1,dy2,dy3,dy4)))

+}

We then call the ode function, using the default lsoda method, to solve the sys-
tem of differential equations. The arguments to the function are specified by position,
and thus not explicitly named.
> out = ode(c(x0, vx0, y0, vy0), hrs, orbit, parms)

Finally, we display the results as before.
> options(digits=5)

> hrs = out[,1]; x = out[,2]; vx = out[,3]

> y = out[,4]; vy = out[,5]

> r = round(sqrt(x^2 + y^2)*1e-8,3)

> v = round(sqrt(vx^2 + vy^2)/3600,3)

> mat = cbind(hrs,x,y,r,v)

> colnames(mat) = c("hrs", "x km", "y km",

"r/1e8 km", "v km/s")

> mat

hrs x km y km r/1e8 km v km/s

[1,] 0 149600000 0 1.496 29.786

[2,] 400 143493179 42306604 1.496 29.786

[3,] 800 125671404 81159285 1.496 29.786

[4,] 1200 97589604 113386031 1.496 29.786

[5,] 1600 61540456 136355691 1.496 29.786

[6,] 2000 20467145 148193044 1.496 29.786

[7,] 2400 -22277150 147931692 1.496 29.786

210 ORDINARY DIFFERENTIAL EQUATIONS

[8,] 2800 -63202726 135592932 1.496 29.786

[9,] 3200 -98968215 112184158 1.496 29.786

[10,] 3600 -126653781 79616413 1.496 29.786

[11,] 4000 -143999011 40548639 1.496 29.786

[12,] 4400 -149587807 -1829627 1.496 29.786

[13,] 4800 -142963858 -44058504 1.496 29.786

[14,] 5200 -124667908 -82690312 1.496 29.786

[15,] 5600 -96193662 -114571009 1.496 29.786

[16,] 6000 -59865843 -137097729 1.496 29.786

[17,] 6400 -18650363 -148431290 1.496 29.786

[18,] 6800 24087794 -147646368 1.496 29.786

[19,] 7200 64859326 -134807039 1.496 29.786

[20,] 7600 100335543 -110961522 1.496 29.786

[21,] 8000 127619992 -78056635 1.496 29.786

[22,] 8400 144484949 -38778991 1.496 29.786

[23,] 8800 149553679 3664689 1.496 29.786

With the ode function of deSolve, the radius and velocity of the orbit remain satis-
factorily constant over the course of the year.

8.3.1 lsoda() and lsode()

The default integrator method of ode is lsoda(). It is able to switch automatically
between stiff and non-stiff methods, depending on the problem. Other methods may
be more efficient in particular cases, but lsoda will almost always get the job done.
Here, for example, it numerically solves the Bessel differential equation of order ν

when ν = 1 (Figure 8.2).

x2 d2J
dx2 + x

dJ
dx

+ (x2−ν
2)J = 0 (8.5)

> require(deSolve)

>

0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

xx

J

Figure 8.2: Numerical solution of the Bessel equation of order 1.

DESOLVE PACKAGE 211

> # Function to feed to lsoda

> diffeqs = function(x,y,nu) {

+ J=y[1]

+ dJdx = y[2]

+ with(as.list(parms), {

+ dJ = dJdx

+ ddJdx = -1/x^2*(x*dJdx + (x^2-nu^2)*J)

+ res = c(dJ, ddJdx)

+ list(res)

+ })

+}

>

> # Abscissa steps

> xmin = 1e-15 # Don’t start exactly at zero, to avoid infinity

> xmax = 15

> dx = 0.1

> xx = seq(xmin, xmax, dx)

>

> # Parameters

> parms = c(nu = 1) # Bessel equation of order 1

>

> # Initial values

> y0 = c(J = 0, dJdx = 1)

>

> # Solve with lsoda

> out = lsoda(y0, xx, diffeqs, parms)

>

> # Plot results and compare with built-in besselJ

> xx = out[,1]; J = out[,2]; dJdx = out[,3]

> plot(xx, J, type="l"); curve(besselJ(x,1),0,15,add=TRUE)

> abline(0,0)

The lsode() function is very similar to lsoda(), but requires that the user spec-
ify whether the problem is stiff. LSODE (Livermore Solver for Ordinary Differen-
tial Equations) is the basic solver of the ODEPACK collection on which deSolve is
based. In turn, the solver vode is very similar to lsode, but uses a variable-coefficient
method rather than the fixed-step interpolation methods in lsode. Also, in vode it
is possible to choose whether or not a copy of the Jacobian is saved for reuse in the
corrector iteration algorithm; in lsode, a copy is not kept. The solver zvode is like
vode, but should be used when the dependent variables and derivatives, y and dy/dt,
are complex. See the help pages for these solver functions for more details.

8.3.2 “adams” and related methods

For non-stiff ODEs, lsoda and lsode use the adams method (more generally, the
Adams–Bashford–Moulton method) behind the scenes. This is a linear multistep

212 ORDINARY DIFFERENTIAL EQUATIONS

0 50 100 150 200

0.
00
0

0.
00
2

0.
00
4

0.
00
6

time

X

0 50 100 150 200

0.
00
0

0.
00
2

0.
00
4

0.
00
6

time
Y

0.000 0.002 0.004 0.006

0.
00
0

0.
00
2

0.
00
4

0.
00
6

X

Y

Figure 8.3: Concentration changes with time in an oscillating chemical system (Equation 8.6).

method for numerical solution of ODEs. To quote from Wikipedia: “Conceptually,
a numerical method starts from an initial point and then takes a short step forward
in time to find the next solution point. The process continues with subsequent steps
to map out the solution. Single-step methods (such as Euler’s method) refer to only
one previous point and its derivative to determine the current value. Methods such
as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a
higher order method, but then discard all previous information before taking a second
step. Multistep methods attempt to gain efficiency by keeping and using the informa-
tion from previous steps rather than discarding it. Consequently, multistep methods
refer to several previous points and derivative values. In the case of linear multistep
methods, a linear combination of the previous points and derivative values is used.”
Variants of the adams method are impAdams and impAdams d which use different
methods of iteration and treatment of the Jacobian. See the deSolve help pages for
details.

The adams method can be called directly as a method in ode (but not as a func-
tion adams()), as illustrated in this example of an oscillating chemical system of
reactions (Equation 8.6) between X and Y, fed by reactant A which is maintained at
a concentration of 0.05 units, while the concentrations of X and Y start at 0. Results
are plotted in Figure 8.3.

dX
dt

= k1A− k2X− k3XY 2 (8.6)

dY
dt

= k2X + k3XY 2− k4Y

> require(deSolve)

> # Reaction mechanism

> diffeqs = function(t,x,parms) {

+ X=x[1]

+ Y=x[2]

+ with(as.list(parms), {

+ dX = k1*A - k2*X - k3*X*Y^2

+ dY = k2*X + k3*X*Y^2 - k4*Y

DESOLVE PACKAGE 213

+ list(c(dX, dY))

+ })}

>

> # Time steps

> tmin = 0; tmax = 200; dt = 0.01

> times = seq(tmin, tmax, dt)

>

> # Parameters: Rate constants and A concentration

> parms = c(k1 = 0.01, k2 = 0.01, k3 = 1e6, k4 = 1, A = 0.05)

>

> # Initial values

> x0 = c(X = 0, Y = 0)

>

> # Solve with adams method

> out = ode(x0, times, diffeqs, parms, method = "adams")

>

> # Plot results

> time = out[,1]; X = out[,2]; Y = out[,3]

>

> par(mfrow = c(1,3))

> plot(time, X, type="l") # Time variation of X

> plot(time, Y, type="l") # Time variation of Y

> plot(X,Y, type="l") # Phase plot of X vs Y

> par(mfrow = c(1,1))

8.3.3 Stiff systems

A system of ODEs is called “stiff” if the dependent variables change according to
two or more very different scales of the independent variable. ode() handles stiff
systems with the backward differentiation formula (bdf) methods bdf or bdf d. The
help page, which explains the differences among these, also states that the method
daspk may outperform method bdf for very stiff systems. The functions lsoda()
and lsode() invoke these methods when faced with stiff equations.

For example, a set of equations that arise in a chemical engineering context
(Hanna and Sandall, pp. 302-3)

dy1

dt
=−0.1y1−49.9y2

dy2

dt
=−50y2 (8.7)

dy3

dt
= 70y2−120y3

with y1(0) = 2,y2(0) = 1,y3(0) = 2 can be solved with bdf as follows:

> require(deSolve)

> # model equations

214 ORDINARY DIFFERENTIAL EQUATIONS

> diffeqs = function(x,y,p) {

+ y1=y[1];y2=y[2];y3=y[3]

+ dy1 = -0.1*y1 - 49.9*y2

+ dy2 = -50*y2

+ dy3 = 70*y2 - 120*y3

+ list(c(dy1, dy2, dy3))

+ }

>

> # Time steps

> xmin=0;xmax=2;dx=0.1

> x = seq(xmin, xmax, dx)

>

> # Initial values

> y0 = c(2,1,2)

>

> # Solve with bdf

> out = ode(y0, x, diffeqs, parms = NULL, method = "bdf")

> mat = cbind(out[,1], out[,2], out[,3], out[,4])

> mat[nrow(mat),]

[1] 2.000000e+00 8.187308e-01 -1.475708e-08 -1.698035e-08

The analytical solution for y[1] at time 2.0 is 0.8187.
To solve with lsoda(), we need change only the invocation of the particular

solver:
> out = lsoda(y0, x, diffeqs, parms = NULL)

As stated in the deSolve package vignette (p. 22) “The solvers from ODEPACK
can be fine-tuned if it is known whether the problem is stiff or non-stiff, or if the
structure of the Jacobian is sparse.” See the documentation for an illustration of how
to use the Jacobian to enhance solution of stiff systems.

8.4 Matrix exponential solution for sets of linear ODEs

Since the above set of ODEs is linear, it can also be solved by a matrix exponential
technique. The concentrations of each of the dependent variables can be shown to
decay as a weighted sum of exponentials exp(-λ t). The decay constants λ are given
by the eigenvectors of the rate coefficient matrix m, and the weights w are obtained
by solving the equation mathb f Evw = c0, where Ev is the matrix of eigenvectors and
c0 is the vector of initial concentrations. The procedure is illustrated below, and leads
to the same result as with the ode method.
> m = matrix(c(-0.1,-49.9,0,0,-50,0,0,70,-120), nrow=3, byrow=TRUE)

> lam = c(); expt = c(); A = 0

> time = 2

> Ev = eigen(m)$vectors

> c0 = c(2,1,2) # initial concentrations

> w = solve(Ev, c0)

> for (i in 1:nrow(m)) {

EVENTS AND ROOTS 215

+ lam[i] = eigen(m)$values[i]

+ A = A + w[i]*Ev[1,i]*exp(lam[i]*time)

+ }

> A

[1] 0.8187308

8.5 Events and roots

The solvers in ode can handle events, instantaneous changes in the variables that
affect the model. If the variable is external, so that it is essential to the model but
not calculated by the model, it is called a forcing function. The deSolve vignette
(p.37) presents an example of a forcing—the measured flux of sediment oxygen
consumption—that is imposed on the model in the form of a data series. Here we
present another example: the voltage V across an RC circuit subject to a periodic
rectangular voltage pulse built with a combination of the rep() and approxfun()

functions. The differential equation for the change in voltage with time is

dV
dt

= ForcingFunction− V
RC

. (8.8)

We begin in the more-or-less standard way, loading deSolve and setting up the
time sequence over which the solution will be calculated.
> require(deSolve)

> # Time sequence

> tmin=0; tmax=4; dt=.01 #millisec

> times = seq(tmin, tmax, dt)

We next define the forcing voltage: a sequence of (1,0,1,0) pulses, each extending
for 1/dt time steps. The time and voltage pulses are bound together as a matrix
representing a rectangular wave.
> # Forcing behavior

> pulse = c(rep(1,1/dt), rep(0,1/dt), rep(1,1/dt), rep(0,1/dt+1))

> sqw = cbind(times, pulse)

The pulse is now converted into a function with approxfun(). The interpolation
method is “linear” and rule = 2 avoids NaNs while interpolating.
> SqWave = approxfun(x = sqw[,1], y = sqw[,2],

+ method = "linear", rule = 2)

We write the RC circuit equation for dV/dt as a function to be fed to lsoda()

> voltage = function(t, V, RC) list (c(SqWave(t) - V/RC))

and define the RC value as a parameter, and the initial value of V

> parms = c(RC = 0.6) # millisec

> V0 = 0 # Initial condition

216 ORDINARY DIFFERENTIAL EQUATIONS

0 1 2 3 4
0.
0

0.
4

0.
8

msec

V

Figure 8.4: RC circuit with periodic pulse as example of an event-driven ODE.

The solution is now generated simply by a single line of code:
> Out = lsoda(y = V0, times = times, func = voltage,

+ parms = parms)

The first column of the solution matrix Out is the time, the second column is the
voltage. These are plotted against each other, with the result in Figure 8.4.
> plot(Out[,1], Out[,2], type = "l", ylim = c(0,1), xlab = "msec",

+ ylab = "V")

> lines(times, pulse)

Events may be triggered by roots, i.e., when a certain condition equals 0. Here
is an example from a hypothetical drug delivery protocol. The administered drug
is A, which is then metabolized to the active form B in a reversible process with
rate constants k f 1 and kr1. B is also irreversibly removed from the system with rate
constant k f 2. The kinetic rate equations are

dA
dt

=−k f 1A + kr1B

dB
dt

= k f 1A− kr1B− k f 2B (8.9)

These equations are translated into a function returning the time derivatives:
> # Drug metabolism kinetic equations

> diffeqs = function(t,y,parms) {

+ #A = y[1]

+ #B = y[2]

+ with(as.list(parms), {

+ dy1 = - kf1*y[1] + kr1*y[2]

+ dy2 = kf1*y[1] - kr1*y[2] - kf2*y[2]

+ return(list(c(dy1,dy2)))

+ })

+ }

EVENTS AND ROOTS 217

We want to keep B at a concentration 1 or higher, so whenever the concentration
of B falls to 1, we add enough A to bring its concentration to 2. The code for the root
and event functions is:
> # event triggered if B = 1

> rootfun <- function (t, y, parms) y[2] -1

>

> # sets A = 2

> eventfun = function(t, y, parms) {

+ y[1] = 2

+ return(y)

+ }

Setting up to solve the equations proceeds in the standard way:
> # Time steps

> tmin = 0; tmax = 10; dt = 0.1

> times = seq(tmin, tmax, dt)

>

> # Parameters: values of rate constants

> parms = c(kf1 = 1, kr1 = 0.1, kf2 = 1)

>

> # Initial values of A and B

> y0 = c(3,2)

We invoke ode() as the wrapper to solve the set of equations, while feeding
events and rootfun as arguments. This automatically calls the lsodar solver. See
the help page for details.
> # Solve with lsodar

> out = ode(times = times, y = y0, func = diffeqs, parms = parms,

+ events = list(func = eventfun, root = TRUE),

+ rootfun = rootfun)

The results may now be plotted in the standard way (Figure 8.5).
> # Plot results

> # par(mfrow = c(1,2))

> time = out[,1]; A = out[,2]; B = out[,3]

> plot(time, A, type="l", ylim = c(0,3), ylab = "conc")

> lines(time, B, lty = 2)

> legend("topright", legend = c("A","B"), lty = 1:2, bty="n")

For another example, we consider the Lotka–Volterra model (Figure 8.6) for the
population dynamics of a predator–prey system. The prey population grows accord-
ing to first-order kinetics (k2*prey) and is reduced by second-order interactions with
predators (-k1*pred*prey). The predator population grows by second-order inter-
actions with prey (k3*pred*prey, where k3 is a conversion efficiency coefficient),

218 ORDINARY DIFFERENTIAL EQUATIONS

0 2 4 6 8 10
0.
0

1.
0

2.
0

3.
0

time

co
nc

A
B

Figure 8.5: Drug delivery protocol illustrating root-triggered event: when B falls below 1, A
is added to bring it to 2.

and is reduced by a first-order death rate (-k4*pred).

d prey
dt

=−k1 pred× prey + k2 prey

d pred
dt

= k3 ∗ pred× prey− k4 pred (8.10)

We first run the model without any events, showing that the two populations vary
in a regular cyclic manner.

> require(deSolve)

>

> # Population dynamics

> diffeqs = function(t,x,parms) {

+ prey = x[1]

+ pred = x[2]

0 50 150

0
20

60
10
0

time

pr
ey

prey
pred

30 50 70

6
8

10
14

prey

pr
ed

Figure 8.6: Lotka–Volterra predator–prey simulation.

EVENTS AND ROOTS 219

+ with(as.list(parms), {

+ dprey = -k1*pred*prey + k2*prey

+ dpred = k3*pred*prey - k4*pred

+ res = c(dprey, dpred)

+ list(res)

+ })

+ }

>

> # Time steps

> tmin = 0; tmax = 200; dt = 1

> times = seq(tmin, tmax, dt)

>

> # Parameters

> parms = c(k1 = 0.01, k2 = 0.1, k3 = 0.001, k4 = 0.05)

> # Initial values

> x0 = c(prey = 50, pred = 15)

>

> # Solve with lsoda

> out = lsoda(x0, times, diffeqs, parms, rtol = 1e-6,

+ atol = 1e-6)

>

> # Plot results

> par(mfrow = c(1,2))

> time = out[,1]; prey = out[,2]; pred = out[,3]

> plot(time, prey, type="l", ylim = c(0,100))

> lines(time, pred, lty = 2)

> legend("topleft", legend = c("prey","pred"), lty = 1:2,

+ bty="n")

> plot(prey, pred, type = "l")

> par(mfrow = c(1,1))

Now we repeat the simulation, but perturb the system (impose an event) by
adding two predators at time 50 with the function eventdat.
> eventdat = data.frame(var = "pred", time = 50, value = 2, method = "add")

The calculation proceeds just as above, except that the call to lsoda() is modi-
fied by addition of the events argument, with results as shown in Figure 8.7.
> out = lsoda(x0, times, diffeqs, parms, events = list(data =

+ eventdat))

Surprisingly, the populations of predators and prey settle into a new steady state
in which both are reduced! Essentially, the extra predators kill off too many prey,
thereby reducing their food supply and thereby their own population.

We have demonstrated the root-finding syntax for the lsoda solver; lsodar,
lsode, and lsodes work the same way. The radau solver works slightly differently;
one or another of these may be more efficient depending on the problem. See the help
pages for details.

220 ORDINARY DIFFERENTIAL EQUATIONS

0 50 150

0
20

60
10
0

time

pr
ey

prey
pred

30 40 50 60

6
8

10
14

prey

pr
ed

Figure 8.7: Lotka–Volterra predator–prey simulation with added event at t = 50.

8.6 Difference equations

The “iteration” method in ode() enables the numerical solution of difference
equations. The model function (Population in the example below) returns the new
values, rather than the rates of change of the variables. Consider a model of a popu-
lation divided into three age groups: child (0–12 years), childbearing (13–40 years),
and aged (41 years or more). The 0–12 group increases by births in the 13–40 group,
and decreases by deaths and by passage into the 13–40 group. The 13–40 group in-
creases by gains from the 0–12 group, and decreases by deaths and by passage into
the >= 41 group. The >= 41 group increases by gains from the 13–40 group, and de-
creases by death. The parameters are chosen to represent fairly high birth and death
rates as found in many developing societies.

We begin by writing a function, Population, whose variables are the popula-
tions in the three age groups, and giving equations for the growth and decline in
each group. The function returns a list with the new populations after a unit time
increment.
> Population = function(t,y,param) {

+ y1 = y[1] # 0-12 group population

+ y2 = y[2] # 13-40 group population

+ y3 = y[3] # 41 and older population

+ y1.new = b*y2 + 11/12*y1*(1 - d1)

+ y2.new = 1/12*y1*(1 - d1) + 26/27*y2*(1 - d2)

+ y3.new = 1/27*y2*(1 - d2) + y3*(1 - d3)

+ return(list(c(y1.new, y2.new, y3.new)))

+ }

We specify the birth and death rate parameters, the initial populations, and the time
span over which the population is simulated.
> b = 0.5 # Birth rate in 13-40 group

> d1 = 0.1 # Death rate of 0-12 group

> d2 = 0.1 # Death rate of 13-40 group

DELAY DIFFERENTIAL EQUATIONS 221

> d3 = 0.25 # Death rate of 41 and older

>

> y = c(200, 400, 400) # Initial populations in each group

>

> times = 0:50 # Time span

We then call ode with the iteration method to calculate the population over
time.
> out = ode(func = Population, y = y, times = times, parms =

+ c(b,d1,d2,d3), method = "iteration")

The plot command, when applied to a deSolve object, automatically produces
a separate plot for each variable. To put all three populations on the same plot, we
use matplot as indicated (Figure 8.8).
> plot(out) # Three separate plots

>

> # Now alll three age groups on a single plot

> matplot(times,out[,2:4], type = "l", lty=1:3, col = rep(1,3),

+ ylab = "Population")

> legend("topleft", legend = c("0-12","13-40","40"),

+ bty="n",lty=1:3)

> par(mfrow=c(1,1)) # Return to 1 row, 1 column

8.7 Delay differential equations

Delay differential equations (DDEs) differ from ODEs in that they contain deriva-
tives that depend on the values of the variables at previous times. The initial condi-
tions for DDEs must specify not only the values at time = 0, but also at times < 0
back to the time of the longest lag in the problem. DDEs also present difficulties in
that they often have discontinuities in low-order derivatives; e.g., a constant value
up to t = 0, followed by a non-zero slope for t > 0. Therefore, numerical methods
developed for ODEs must be modified to deal with DDEs. A useful discussion of
DDEs and their solutions in the context of MATLAB R© is Shampine and Thompson
2000 (http://www.radford.edu/thompson/webddes/tutorial.html).

In R, DDEs may be solved using the dede function in deSolve. The
PBSddesolve package contains the function dde which operates similarly, albeit
with slight differences in the names of some functions. In the discussion that fol-
lows we use dede. We show just two relatively simple examples; more examples of
increasing complexity can be found in the reference manuals deSolve.pdf and PBS-
ddesolve.pdf (including demos), the vignette Package deSolve: Solving Initial Value
Differential Equations in R (all available on the CRAN Packages website), and the
help pages for dede and lagvalue in the deSolve package. The above-referenced
paper by Shampine and Thompson has further examples, whose translation from
MATLAB to R would be a useful exercise for the reader.

The approach, function calls, and syntax for DDEs are similar to those for ODEs,
with a few additions. The time lags—of which there may be more than one—are

222 ORDINARY DIFFERENTIAL EQUATIONS

0 10 20 30 40 50

10
00

20
00

30
00

40
00

1

time

0 10 20 30 40 50

50
0

10
00

15
00

2

time

0 10 20 30 40 50

50
15
0

25
0

35
0

3

time

0 10 20 30 40 50

0
10
00

20
00

30
00

40
00

times

P
op
ul
at
io
n

0-12
13-40
40

Figure 8.8: Graphs of three population groups (1: 0–12, 2: 13–40, 3: greater than 40).

generally (though not necessarily) called tau. The value of the dependent variable(s)
at the lagged time is defined by the function lagvalue. If there is more than one
variable, lagvalue becomes a vector with variables specified by indices [1], [2],
etc. If necessary, the lagged derivative is defined by the function lagderiv.

Our first example is the Hutchinson equation of population dynamics

dy
dt

= ry(1− y(t− τ)
K

) (8.11)

as presented by Y. Kuang in math.la.asu.edu/~kuang/paper/STE034KuangDDEs.pdf.
The derivative function for the Hutchinson model, which is to be fed to dede, is

> func = function(t, y, parms) {

+ tlag=t-tau

+ if (tlag < 0) dy = 1 else dy = r*y*(1 - lagvalue(tlag)/K)

+ return(list(c(dy))) }

DELAY DIFFERENTIAL EQUATIONS 223

0 20 40 60 80 100

0
2

4
6

8
10

Comparison of lag times

time

P
op
ul
at
io
n

1
3

Figure 8.9: Solutions to Hutchinson Equation 8.11 using dede with time lag τ = 1 and 3).

We enter the initial value of the population, the desired time sequence, and the
parameters of the model:
> yinit = 0

> times = 0:100

> r = 1; K = 1; tau = 1

To get a solution, we load deSolve and put the arguments into dede.
> require(deSolve)

> yout1 = dede(y = yinit, times = times, func = func,

+ parms = c(r,K, tau))

We test the sensitivity of the model to the delay time by choosing another value
of τ , running the calculation again ...
> tau = 3

> yout2 = dede(y = yinit, times = times, func = func,

+ parms = c(r,K, tau))

... and plotting both results on the same plot (Figure 8.9).
> plot(yout1,yout2, type = "l", main="Comparison of lag times",

+ col = rep(1,2), ylim = c(0,10), ylab = "Population")

> legend("topleft", legend = c("1","3"), lty = c(1,3), bty="n")

As Huang points out, τ has no clear physical meaning, and the fact that modest
variation in τ leads to such different results leads one to be skeptical of the utility of
the equation. However, it does serve as a useful example of how a delay differential
equation can be formulated and solved.

The second example, adapted from the PBSddesolve reference, shows how to
treat a system of DDEs with two dependent variables (Figure 8.10).

> require(deSolve)

>

> # Create a function to return derivatives

224 ORDINARY DIFFERENTIAL EQUATIONS

0 5 10 15 20 25 30

-6
-4

-2
0

2
4

6

t

y

y1
y2

Figure 8.10: Solution to system of DDEs with two dependent variables.

> derivs = function(t,y,parms) {

+ if (t < tau) lag = yinit else lag = lagvalue(t - tau)

+ dy1 = a * y[1] - (y[1]^3/3) + m*(lag[1] - y[1])

+ dy2 = y[1] - y[2]

+ return(list(c(dy1,dy2))) }

>

> # Define initial values, parameters, and time sequence

> yinit = c(1,1)

> tau = 3; a = 2; m = -5

> times = seq(0,30,0.1)

>

> # Solve the dede system

> yout = dede(y=yinit,times=times,func=derivs,parms=c(tau,a,m))

>

> # Plot the results

> plot(yout[,1], yout[,2], type="l", xlab="t", ylab="y",

+ ylim=c(min(yout[,2], yout[,3]), 1.2*max(yout[,2], yout[,3])))

> lines(yout[,1], yout[,3], lty=3)

> legend("topleft", legend = c("y1","y2"),lty = c(1,3),bty="n")

8.8 Differential algebraic equations

Differential algebraic equations (DAEs) contain a combination of ODEs, which are
responsible for the evolution of the system, and algebraic equations, which impose
constraints on the solution. Common examples arise in chemical reaction kinetics,
where differential equations describe the time variation of the concentrations of the
chemical species, while equilibrium or conservation equations constrain the allow-
able values of the concentrations.

DIFFERENTIAL ALGEBRAIC EQUATIONS 225

3 4 5 6 7 8

-0
.5

0.
0

0.
5

1.
0

1.
5

time

y1
, y

2

y1
y2

Figure 8.11: Solution to system of differential algebraic Equations 8.12.

As Wikipedia (en.wikipedia.org/wiki/Differential algebraic equation#Examples)
explains, “The solution of a DAE consists of two parts, first the search for consistent
initial values and second the computation of a trajectory. To find consistent initial
values it is often necessary to consider the derivatives of some of the component
functions of the DAE. The highest order of a derivative that is necessary in this pro-
cess is called the differentiation index. The equations derived in computing the index
and consistent initial values may also be of use in the computation of the trajectory.”

The deSolve package in R contains two DAE solvers, daspk and radau. daspk
solves problems with index 0 or 1, and is useful for non-stiff systems. radau solves
problems with index <= 3, and may be used for stiff systems.

As an example, consider the system of equations

x(t)− y(t) = sin(t)
x(t) + y(t) = 1 (8.12)

with initial conditions x(π) = 1/2. daspk requires that the equations be written in
residual form, as in eq1 and eq2 in the code below with results shown in Figure
8.11.

> require(deSolve)

>

> # Function defining the system

> Res_DAE = function (t, y, dy, pars){

+ y1=y[1]; y2=y[2]; dy1=dy[1]; dy2=dy[2]

+ eq1 = dy1 - y2 - sin(t)

+ eq2 = y1 + y2 - 1

+ return(list(c(eq1, eq2), c(y1,y2)))

+ }

>

> # Time sequence and initial values

> times = seq(pi,8,.1)

226 ORDINARY DIFFERENTIAL EQUATIONS

> y = c(y1 = 0.5, y2 = 0.5)

> dy = c(dy1 = 0.5, dy2 = -0.5)

>

> # Solution with daspk

> DAE = daspk(y = y, dy = dy, times = times,

+ res = Res_DAE, parms = NULL, atol = 1e-10, rtol = 1e-10)

>

> # Output and plotting

> time = DAE[,1]; y1 = DAE[,2]; y2 = DAE[,3]

> matplot(time, cbind(y1, y2), xlab = "time", ylab = "y1, y2",

+ type = "l", lty=c(1,3), col = 1)

>

> legend("topleft", legend = c("y1", "y2"), lty = c(1,3),

+ col = 1, bty = "n")

>

As another example, this time with a second derivative, we consider the system
of equations

d2x
dt2 = y(t)

x(t) + 4y(t) = sin(t) (8.13)

with initial conditions x(π) = 1, dx
dt (π) = 0.

> require(deSolve)

>

> Res_DAE = function (t, y, dy, pars){

+ y1 = y[1]; y2 = y[2]; y3 = y[3]

+ dy1 = dy[1]; dy2 = dy[2]; dy3 = dy[3]

+ eq1 = dy1 - 1/4*(cos(t) - dy2)

+ eq2 = dy2 - y3

+ eq3 = dy3-y1

+ return(list(c(eq1, eq2, eq3), c(y1,y2,y3)))

+ }

>

> # times and initial values

> times = seq(pi,7,.1)

> y = c(y1 = -0.25, y2 = 1, y3 = 0)

> dy = c(dy1 = -0.25, dy2 = 0, dy3 = -0.25)

>

> DAE <- daspk(y = y, dy = dy, times = times,

+ res = Res_DAE, parms = NULL, atol = 1e-10, rtol = 1e-10)

>

> time = DAE[,1]; y = DAE[,2]; x = DAE[,3]

>

> matplot(time, cbind(y, x), xlab = "time", ylab = "y,

ROOTSOLVE FOR STEADY STATE SOLUTIONS OF SYSTEMS OF ODES 227

3 4 5 6 7

-1
.0

-0
.5

0.
0

0.
5

1.
0

time

y,
 x

y
x

Figure 8.12: Solution to system of differential algebraic Equations 8.13.

+ x", type = "l", lty=c(1,3), col = 1)

> legend("bottomleft", legend = c("y", "x"), lty = c(1,3),

+ col = 1, bty = "n")

The radau function in the deSolve package is able to solve DAEs with indices
up to 3, and can solve stiff systems as well. The equations must be written in the form
Mdy/dt = f (t,y) where M is the “mass matrix.” The help page for radau explains
its many options and gives several instructive examples, including classic pendulum
and stiff chemical kinetic examples.

8.9 rootSolve for steady state solutions of systems of ODEs

The time evolution of dynamic systems often leads to a steady state. The rootSolve
package provides the function steady(), with several variants depending on the Ja-
cobian of the system, to calculate steady-state values of the system variables. See the
help page for a useful example. For another example, consider a solution containing
an enzyme obeying reversible Michaelis–Menten kinetics, in which the net velocity
v is

v =

V f
K f

S− Vr
Kr

P

1 + S
K f

+ P
Kr

(8.14)

where Vf and Vr are maximum velocities in the forward and reverse directions and K f
and Kr are the Michaelis constants (dissociation constants of the enzyme–substrate
or enzyme–product complexes). A flux Fin of S is supplied to the system, and a
flux Fout of P is removed from the system. The kinetic behavior is modeled by the
user-defined function enzyme(). Solving the system of differential equations for
the concentrations of S and P for a particular set of parameters gives the following
behavior.

> require(deSolve)

> enzyme = function(t, state, pars) {

+ with (as.list(c(state,pars)), {

228 ORDINARY DIFFERENTIAL EQUATIONS

0 10 20 30 40 50

0.
6

0.
7

0.
8

0.
9

1.
0

S

time

0 10 20 30 40 50

1.
0

1.
1

1.
2

1.
3

1.
4

P

time

Figure 8.13: Decrease in substrate S and increase in product P according to Michaelis–
Menten Equation 8.14.

+ dS = Fin - (Vf/Kf*S - Vr/Kr*P)/(1 + S/Kf + P/Kr)

+ dP = (Vf/Kf*S - Vr/Kr*P)/(1 + S/Kf + P/Kr) - Fout

+ return(list(c(dS,dP)))})

+ }

Note that in the code above, the variable state corresponds to the set of variable
concentrations, used to calculate dS and dP, that are passed between function and
solver.
> pars = list(Fin = 0.1, Fout = 0.1, Vf = 1, Vr = 0.5,

+ Kf = 1, Kr = 2)

>

> out = ode (y = c(S = 1, P = 1), times = 0:50,

+ func = enzyme, parms = pars)

> plot(out)

The concentrations appear to reach steady-state levels in a relatively short period
of time. To calculate those levels, and the time required to reach them, we use the
“runsteady” method of the steady() function.

> require (rootSolve)

> ysteady = steady(y = c(S = 1, P = 1), time = c(0,100), func = enzyme,

+ parms = pars, method = "runsteady")

> ysteady$y

S P

0.5833333 1.4166667

The function steady() returns a list. The steady-state values of S and P are given
in ysteady$y. Other attributes of the calculation can be accessed by asking for the
structure of ysteady.
> str(ysteady)

List of 1

ROOTSOLVE FOR STEADY STATE SOLUTIONS OF SYSTEMS OF ODES 229

$ y: Named num [1:2] 0.583 1.417

..- attr(*, "names")= chr [1:2] "S" "P"

- attr(*, "istate")= int [1:23] 2 1 1 0 0 5 100000 0 0 0 ...

- attr(*, "rstate")= num [1:5] 3.88 3.88 66.81 0 0

- attr(*, "precis")= num 8.08e-09

- attr(*, "steady")= logi TRUE

- attr(*, "time")= num 66.8

- attr(*, "steps")= int 75

- attr(*, "class")= chr [1:3] "steady" "rootSolve" "list"

- attr(*, "nspec")= int 2

- attr(*, "ynames")= chr [1:2] "S" "P"

The attributes that are probably of greatest interest are "precis", the precision to
which a steady state is reached; "steady", which indicates whether a steady state
has been reached (TRUE or FALSE); "time", the time in problem units at which
the steady state is reached; and "steps", the number of steps required to reach the
steady state.

On the other hand, although we should be able to use steady() with the default
method “stode”, we get
> steady(y = c(S = 1, P = 1), time = 100, func = enzyme, parms = pars)

diagonal element is zero

[1] 2

$y

S P

1 1

attr(,"precis")

[1] 0.2

attr(,"steady")

[1] FALSE

attr(,"class")

[1] "steady" "rootSolve" "list"

attr(,"nspec")

[1] 2

attr(,"ynames")

[1] "S" "P"

Warning messages:

1: In stode(y, time, func, parms = parms, ...) :

error during factorisation of matrix (dgefa); singular matrix

2: In stode(y, time, func, parms = parms, ...) : steady-state not

reached

Apparently this difficulty arises because the system has several steady states de-
pending on initial conditions, and the Newton–Raphson solution method flips unpre-
dictably between them. This example serves as a warning that numerical methods, in
R or any other language, are not foolproof.

230 ORDINARY DIFFERENTIAL EQUATIONS

8.10 bvpSolve package for boundary value ODE problems

Boundary value problems (BVPs) are systems of ODEs with values and derivatives
specified at more than one point—commonly two points, at the boundaries. The
bvpSolve package contains three functions for solving boundary value problems:
bvpshoot(), bvptwpl(), and bvpcol().

8.10.1 bvpshoot()

Perhaps the most common approach to the solution of one-dimensional BVPs is the
shooting method, which gains its name from the analogy with the method of training
artillery on a distant target: guess an initial direction and velocity for the projectile,
try to improve the initial guesses, and repeat until the target is hit. The code for
methods such as bvpshoot() contains systematic procedures (usually Newtonian
iteration) for using the results of previous trials to iterate subsequent guesses. The
method can fail if the ODE is highly nonlinear or unstable, because the guesses may
need to be unrealistically close to the true value.

For an example of a case where the shooting method does work, we consider the
equation (in reduced units) for the height y of a liquid droplet on a flat surface as a
function of surface distance x (from Higham and Higham, p. 163):

d2y
dx2 + (1− y)

[
1 +
(

dy
dx

)2
]3/2

= 0, (8.15)

along with the boundary conditions at the edges of the drop:

y(−1) = y(1) = 0. (8.16)

We load the bvpSolve package (which must of course be installed first), and it
causes the loading of two other packages on which it depends:
> require(bvpSolve)

Loading required package: bvpSolve

Loading required package: rootSolve

Loading required package: deSolve

Attaching package: bvpSolve

The following object(s) are masked from package:stats:

approx

We define the function, according to Equation 8.15, that returns the first and
second derivatives of y
> fun = function(t, y, parms)

+ { dy1 = y[2]

+ dy2 = -(1-y[1])*(1 + dy1^2)^(3/2)

+ return(list(c(dy1,

+ dy2))) }

and specify the boundary conditions according to Equation 8.16. The first derivatives
at the boundaries are unknown, so they are given as NA.

BVPSOLVE PACKAGE FOR BOUNDARY VALUE ODE PROBLEMS 231

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

x

y

Figure 8.14: Solution to Equation 8.15 for the shape of a liquid drop on a flat surface, by the
shooting method.

> init = c(y = 0, dy = NA)

> end =c(y=0,dy=NA)

Now we solve the boundary value problem by the shooting method, providing
the initial (yini) and final (end) values for the ODE system, the sequence over
which the independent variable ranges, the function that computes the derivatives,
the parameters (none in this case), and the guess for the unknown values of the
initial conditions. There are other possible inputs to bvpshoot depending on the
problem; see the help page for details.
> sol = bvpshoot(yini = init, x = seq(-1,1,0.01),

+ func = fun, yend = end, parms = NULL, guess = 1)

The solution provides x and y vectors, which we use to plot the results shown in
Figure 8.14.
> x = sol[,1]

> y = sol[,2]

> plot(x,y, type = "l")

8.10.2 bvptwp()

We next consider an example of a strongly nonlinear problem with which
bvpshoot() does not deal well, but which the function bvptwp() (twp stands for
two-point) handles nicely. The differential equation is

d2y
dx2 = 100y2 (8.17)

with the boundary conditions

y(0) = 1(
dy
dx

)
x=1

= 0. (8.18)

232 ORDINARY DIFFERENTIAL EQUATIONS

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 8.15: Solution to Equation 8.17 by the two-point method.

As above, we define the function that returns the derivatives,
> fun = function(t, y, p)

+ { dy1 = y[2]

+ dy2 = p*y[1]^2

+ return(list(c(dy1,

+ dy2))) }

define the parameter,
> p = 100

and specify the initial and final conditions, setting the unknown ones to NA.
> init = c(y = 1, dy = NA)

> end =c(y=NA,dy=0)

We then solve and plot the solution as before (Figure 8.15).
> # Solve bvp

> sol = bvptwp(yini = init, x = seq(0,1,0.1),

+ func = fun, yend = end, parms = p)

>

> x = sol[,1]

> y = sol[,2]

> plot(x,y, type = "l")

8.10.3 bvpcol()

The third function in the bvpSolve package, bvpcol(), is based on FORTRAN
code developed for solving multi-point boundary value problems of mixed order.
col stands for collocation. The idea of the collocation method “is to choose a finite-
dimensional space of candidate solutions (usually, polynomials [often splines] up to
a certain degree) and a number of points in the domain (called collocation points),
and to select that solution which satisfies the given equation at the collocation points”
(Wikipedia).

STOCHASTIC DIFFERENTIAL EQUATIONS: GILLESPIESSA PACKAGE 233

Here is a simple example from Acton, Numerical Methods that Work, p. 157

y′′ + y = 0 (8.19)

subject to the boundary conditions

y(0) = 1
y(1) = 2 (8.20)

for which the analytical solution is y(t) = 1.7347sin(t) + cos(t).
Following our by now familiar process, we solve the problem numerically and

plot the result.
> fun = function(t, y, p)

+ { dy1 = y[2]

+ dy2 = -y[1]

+ return(list(c(dy1,

+ dy2))) }

>

> # initial and final condition; second conditions unknown

> init = c(y = 1, dy = NA)

> end =c(y=2,dy=NA)

>

> # Solve bvp

> sol <- bvpcol(yini = init, x = seq(0,1,0.01),

+ func = fun, yend = end, parms = NULL)

>

> x = sol[,1]

> y = sol[,2]

> plot(x,y, type = "l")

>

> # Verify boundary conditions

> y[1]

[1] 1

> y[length(y)]

[1] 2

8.11 Stochastic differential equations: GillespieSSA package

Ordinary differential equations generally assume that the variables are continu-
ous functions. In biological systems, among others, this is not necessarily the
case. There may be only a few molecules in a given region of a cell, or a small
number of members of a population subject to dynamic processes. Such situ-
ations are more properly modeled by stochastic equations, in which processes
occur by jumps rather than continuously. An algorithm that generates a possi-
ble solution of a set of stochastic equations, obeying the properties (proved by

234 ORDINARY DIFFERENTIAL EQUATIONS

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

y

Figure 8.16: Solution to Equations 8.19 and 8.20 by the collocation method.

William Feller), that “the time-to-the-next-jump is exponentially distributed and
the probability of the next event is proportional to the rate,” was developed and
popularized by Daniel Gillespie (Gillespie, Daniel T. (1977). “Exact Stochastic
Simulation of Coupled Chemical Reactions.” The Journal of Physical Chemistry
81 (25): 23402361; http://en.wikipedia.org/wiki/Gillespie algorithm).
The GillespieSSA package provides the function ssa() that implements the exact
Gillespie algorithm and several approximate “tau-leaping” methods.

As an example, consider a region within a cell containing a few binding sites S to
which one of several copies of a protein P may bind, forming a complex SP. The rate
constants for formation and dissociation of the complex are k f and kr, respectively.
The fractional occupancy of the site, S/(S + SP), regulates some further process in
the cell. We first consider the system of ODEs, in which the concentrations of the
components are treated as continuous variables.

First, load deSolve and define the rate equations through the binding function.
> require(deSolve)

> binding = function(Time, State, Pars) {

+ with(as.list(c(State, Pars)), {

+ rate = kf*S*P - kr*SP

+ dS = -rate

+ dP = -rate

+ dSP = rate

+ return(list(c(dS, dP, dSP)))

+ })

Specify the parameter values and the time sequence.
> pars = c(kf = 0.005, kr = 0.15)

> yini = c(S = 10, P = 120, SP = 0)

> times = seq(0, 10, by = 0.1)

Solve the system of equations and plot the results (Figure 8.17).

STOCHASTIC DIFFERENTIAL EQUATIONS: GILLESPIESSA PACKAGE 235

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

time

fra
ct
O
cc

Figure 8.17: Time dependence of the binding reaction S + P = SP treated as a continuous
process.

> out = ode(yini, times, binding, pars)

> time = out[,1]

> fractOcc = out[,4]/(out[,2] + out[,4])

> plot(time, fractOcc, type = "l")

Now consider the same reversible binding reaction, treated by the Gillespie al-
gorithm. There are three species and two reaction channels, since the forward S +

P --kf--> SP and reverse SP --kr--> S + P reactions are treated as separate
channels in the Gillespie formalism. Load the GillespieSSA package (installing it
first if that has not been done), then set up the problem, beginning with the parameter
values pars and the initial state vector yini.
> require(GillespieSSA)

> pars = c(kf = 0.005, kr = 0.15)

> yini = c(S = 10, P = 120, SP = 0)

Formulate the state-change matrix nu, with species in rows and reactions in
columns:
> nu = matrix(c(-1, +1,

-1, +1,

1, -1),

ncol = 2, byrow = TRUE)

and the “propensity vector” a, the rate for each channel:
> a = c("kf*S*P", "kr*SP")

Specify the final time tf to which the simulation is to be carried out, and the name
of the simulation.
> tf = 10

> simName = "Reversible Binding Reaction"

Start with the direct method D in ssa(), with verbose output = TRUE giving
wall clock time, computed time, and variable values at each consoleinterval. (If

236 ORDINARY DIFFERENTIAL EQUATIONS

verbose = FALSE the reaction progress is plotted, but none of the numerical results
are printed. However, this is the default because the calculation runs much faster.)

> # Direct method

> set.seed(1)

> out = ssa(yini,a,nu,pars,tf,method="D",

simName,verbose=TRUE,consoleInterval=1)

Running D method with console output every 1 time step

Start wall time: 2012-10-31 10:39:47...

t=0 : 10,120,0

(0.003s) t=1.230886 : 6,116,4

(0.005s) t=2.217471 : 5,115,5

(0.006s) t=3.08914 : 3,113,7

(0.007s) t=4.172439 : 2,112,8

(0.009s) t=5.043667 : 4,114,6

(0.01s) t=6.125707 : 5,115,5

(0.012s) t=7.476262 : 3,113,7

(0.013s) t=8.317041 : 2,112,8

(0.014s) t=9.31306 : 5,115,5

t=10.04292 : 3,113,7

tf: 10.04292

TerminationStatus: finalTime

Duration: 0.015 seconds

Method: D

Nr of steps: 33

Mean step size: 0.3043309+/-0.2187604

End wall time: 2012-10-31 10:39:47

> # Plot the result

> ssa.plot(out)

The function ssa.plot() provides an easy way to visualize the time course of
the set of reactions, along with some useful characteristics of the simulation. Note
the clearly fluctuating concentrations (Figure 8.18).

The output of ssa(), out in this case, is a list with three different kinds of in-
formation: a matrix out$data about the time dependence of the processes, a list
out$stats about the course of the calculation, and a list out$args summarizing
the inputs to the calculation.
> str(out) # Structure of out

List of 3

$ data : num [1:35, 1:4] 0 0.165 0.182 0.204 0.295 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:35] "timeSeries" "" "" "" ...

.. ..$: chr [1:4] "" "S" "P" "SP"

$ stats:List of 8

..$ startWallime : chr "2012-10-31 10:39:47"

STOCHASTIC DIFFERENTIAL EQUATIONS: GILLESPIESSA PACKAGE 237

0 2 4 6 8 10

0
20

40
60

80
12
0

Time

Fr
eq
ue
nc
y

Reversible Binding Reaction

S
P
SP

D, 0.03 sec, 33 steps (1 steps/point)

Figure 8.18: Time dependence of the binding reaction S + P = SP treated as a stochastic
process.

..$ endWallTime : chr "2012-10-31 10:39:47"

..$ elapsedWallTime : Named num 0.015

.. ..- attr(*, "names")= chr "elapsed"

..$ terminationStatus : chr "finalTime"

..$ nSteps : int 33

..$ meanStepSize : num 0.304

..$ sdStepSize : num 0.219

..$ nSuspendedTauLeaps: num 0

$ args :List of 18

..$ x0 : Named num [1:3] 10 120 0

.. ..- attr(*, "names")= chr [1:3] "S" "P" "SP"

..$ a : chr [1:2] "kf*S*P" "kr*SP"

..$ nu : num [1:3, 1:2] -1 -1 1 1 1 -1

..$ parms : Named num [1:2] 0.005 0.15

.. ..- attr(*, "names")= chr [1:2] "kf" "kr"

..$ tf : num 10

..$ method : chr "D"

..$ tau : num 0.3

..$ f : num 10

..$ epsilon : num 0.03

..$ nc : num 10

..$ hor : num NaN

..$ dtf : num 10

..$ nd : num 100

..$ ignoreNegativeState: logi TRUE

..$ consoleInterval : num 1

..$ censusInterval : num 0

..$ verbose : logi TRUE

..$ simName : chr "Reversible Binding Reaction"

238 ORDINARY DIFFERENTIAL EQUATIONS

The vector of time is out$data[,1] and the vectors of concentrations are
out$data[,2], out$data[,3], and out$data[,4] for S, P, and SP, respectively.
We can use these vectors to calculate the time course of the fractional population of
the sites that are bound:

fbound =
SP

S + SP
. (8.21)

We do so while comparing the direct (exact) Gillespie method with the three ap-
proximate tau-leap methods included as optional methods in ssa. These are intended
to speed up the calculation by skipping some time steps according to their underlying
algorithms. We plot the results (Figure 8.19) and include in the title of each plot the
elapsed time as obtained from out$stats$elapsedWallTime.

> par(mfrow = c(2,2)) # Prepare for four plots

Direct method:
> set.seed(1)

> out = ssa(yini,a,nu,pars,tf,method="D",simName,

+ verbose=FALSE,consoleInterval=1)

> et = as.character(round(out$stats$elapsedWallTime,4)) #elapsed time

> time = out$data[,1]

> fractOcc = out$data[,4]/(out$data[,2] + out$data[,4])

> plot(time, fractOcc, pch = 16, cex = 0.5, main = paste("D ",et, " s"))

Explicit tau-leap method:
> set.seed(1)

> out = ssa(yini,a,nu,pars,tf,method="ETL",simName,

+ tau=0.003,verbose=FALSE,consoleInterval=1)

> et = as.character(round(out$stats$elapsedWallTime,4)) #elapsed time

> time = out$data[,1]

> fractOcc = out$data[,4]/(out$data[,2] + out$data[,4])

> plot(time, fractOcc, pch = 16, cex = 0.5,

+ main = paste("ETL ",et, "s"))

Binomial tau-leap method:
> set.seed(1)

> out = ssa(yini,a,nu,pars,tf,method="BTL",simName,

+ verbose=FALSE,consoleInterval=1)

> et = as.character(round(out$stats$elapsedWallTime,4)) #elapsed time

> time = out$data[,1]

> fractOcc = out$data[,4]/(out$data[,2] + out$data[,4])

> plot(time, fractOcc, pch = 16, cex = 0.5,

+ main = paste("BTL ",et, "s"))

Optimized tau-leap method:
> set.seed(1)

> out = ssa(yini,a,nu,pars,tf,method="OTL",simName,

+ verbose=FALSE,consoleInterval=1)

Warning messages:

1: In FUN(newX[, i], ...) : coercing argument of type ’double’ to logical

2: In FUN(newX[, i], ...) : coercing argument of type ’double’ to logical

3: In FUN(newX[, i], ...) : coercing argument of type ’double’ to logical

STOCHASTIC DIFFERENTIAL EQUATIONS: GILLESPIESSA PACKAGE 239

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

D 0.008 s

time

fra
ct
O
cc

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

ETL 0.548 s

time
fra
ct
O
cc

0 2 4 6 8 10

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 BTL 0.002 s

time

fra
ct
O
cc

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

OTL 0.006 s

time

fra
ct
O
cc

Figure 8.19: Fractional occupancy of binding sites calculated according to the direct and
three tau-leap methods of the Gillespie algorithm.

> et = as.character(round(out$stats$elapsedWallTime,4)) #elapsed time

> time = out$data[,1]

> fractOcc = out$data[,4]/(out$data[,2] + out$data[,4])

> plot(time, fractOcc, pch = 16, cex = 0.5,

+ main = paste("OTL ",et, "s"))

There are considerable differences among the results from methods and, at least
for this example, the direct method is not the slowest. In most cases, it will be the
slowest (as seen in the examples referenced in the next paragraph), though it is some-
what unpredictable which method will be the fastest and most efficient.

The GillespieSSA package contains some instructive models, useful as mod-
ifiable templates, that can be called with demo(GillespieSSA). They include a
decaying-dimerization reaction set, a linear chain polymerization system, a logistic
growth model, two predator–prey models, and two models of infectious processes.
The help page for ssa provides some related models as examples.

240 ORDINARY DIFFERENTIAL EQUATIONS

8.12 Case studies

8.12.1 Launch of the space shuttle

Projectile motion is a good exercise ground for the numerical solution of ordinary
differential equations. Here we consider the first two minutes of launch of the space
shuttle, basing our treatment on that of VanWyk, 2008, p. 166.

The factors that would have to be taken into account if the vehicle lifted straight
up are the mass of the shuttle, booster rockets and fuel that must be lifted against the
nearly—but not quite—constant pull of gravity; the burn rate of the fuel that reduces
the mass after ignition and lift-off; the thrust of the engines; and the air resistance
that decreases with altitude. In addition, the shuttle does not rise straight up, since
the thrust angle with respect to launch direction is changed at a constant rate to direct
the vehicle over the ocean, from which its ejected booster rockets can be recovered.
These considerations lead to the equations of motion

m
d2y
dt2 = (thrust−drag)cos(εt)−mg

(
R

R + y

)2

(8.22)

and

m
d2x
dt2 = (thrust−drag)sin(εt) (8.23)

with the initial conditions

y(0) = x(0) = 0, y′(0) = x′(0) = 0. (8.24)

The mass decreases with time according to

m = m0−burn.rate× t (8.25)

and the drag is calculated as

drag =
1
2

ρACdragv2 (8.26)

where the air density decreases with altitude according to

ρ = ρ0e−y/8000. (8.27)

x and y are measured in meters while the other lengths are measured in km.
Values for the various factors are quantified in the parameters listed in the code

below.
> # Parameters

> m0 = 2.04e6 # Initial mass, kg

> burn.rate = 9800 # kg/s

> R = 6371 # Radius of earth, km

> thrust = 28.6e6 # Newtons

> dens0 = 1.2 # kg/m^3 Density of air at earth surface

CASE STUDIES 241

> A = 100 # m^2, cross-section of launch vehicle

> Cdrag = 0.3 # Drag coefficient

> eps = 0.007 # radians/s, rate of angular change

> g = 9.8 #

The equations of motion are expressed in terms of a vector y whose components
are the x- and y- positions and velocities.
> # Equations of motion

> launch = function(t, y,parms) {

+ xpos = y[1]

+ xvel = y[2]

+ ypos = y[3]

+ yvel = y[4]

+ airdens = dens0*exp(-ypos/8000)

+ drag = 0.5*airdens*A*Cdrag*(xvel^2 + yvel^2)

+ m = m0-burn.rate*t

+ angle = eps*t

+ grav = g*(R/(R+ypos/1000))^2

+ xaccel = (thrust - drag)/m*sin(angle)

+ yaccel = (thrust - drag)/m*cos(angle) - grav

+ list(c(xvel, xaccel, yvel, yaccel))

+ }

We next specify the initial values of the positions and velocities, and the times
over which the solution is to be calculated (every second for two minutes).
> # Initial values

> init = c(0,0,0,0)

>

> # Times

> times = 0:120

We load the deSolve package and, since the differential equations are not stiff,
use the "adams" method of solution.
> # Solve with Adams method

> require(deSolve)

> out = ode(init, times, launch, parms=NULL, method="adams")

Finally, we plot the x-y coordinates, expressed in km, at each second of the launch
(Figure 8.20).
> # Plot results

> time = out[,1]; x = out[,2]; y = out[,4]

> plot(x/1000,y/1000, cex=0.5, xlab="x/km", ylab="y/km")

8.12.2 Electrostatic potential of DNA solutions

DNA is perhaps the most highly charged molecule found in nature. As Watson and
Crick showed, B-form DNA has two negative phosphate charges every 0.34 nm along

242 ORDINARY DIFFERENTIAL EQUATIONS

0 10 20 30 40

0
10

20
30

40

x/km

y/
km

Figure 8.20: Height vs. horizontal distance for the first 120 seconds of the space shuttle
launch.

a double helical backbone of radius 1 nm. Therefore, it interacts very strongly with
other charged molecules, including other DNA molecules. To understand how DNA
is tightly coiled and packaged in small volumes such as virus capsids, one needs to
calculate the electrostatic repulsions between nearby DNA segments. The strength
of electrostatic interactions is modulated by the concentration of small ions, such as
salt, in the surrounding solution. The influence of ions on the electrostatic potential
φ is given by the Debye–Hückel equation

52
φ =−κ2

2I ∑
i

Zicie−Ziφ (8.28)

where κ is the inverse Debye length (nm), I is the ionic strength (molar), and Zi and
ci are the charge and molar concentration of the ith ionic species:

I =
1
2 ∑

i
ciZ2

i (8.29)

κ
−1 =

0.304√
I

(8.30)

We model DNA as a cylindrical rod with charge distributed uniformly on its
surface. In cylindrical coordinates where there is no dependence on height or angle,
the Laplacian operator can be written in terms of ρ , the distance from the rod axis to
a point in solution, as

52
φ =

∂ 2φ

∂ρ2 +
1
ρ

∂φ

∂ρ
(8.31)

Defining the dimensionless variable x = κρ and z = lnx, and confining our calculation
to a uni-univalent salt such as NaCl at molar concentration c, Equation 8.28 can be
written

∂ 2φ

∂ z2 =−ce2z

2I

(
e−φ − eφ

)
=−e2z

2
(
e−φ − eφ

)
. (8.32)

CASE STUDIES 243

Since this is a second-order differential equation, it needs two boundary condi-
tions for a complete solution. One is the gradient of the potential at the helical rod
surface, which can be written(

∂φ

∂ z

)
z=lnκa

=−4πσ/ε (8.33)

where σ is the surface charge density and ε is the dielectric constant. For double-
stranded DNA in the units we are using, 4πσ/ε = -0.84.

The second boundary condition depends on the environment in which the DNA
finds itself. If it is effectively alone in dilute solution, then φ→ 0 as z→∞. But if the
DNA is in relatively concentrated solution, a different consideration holds. As stated
by Bloomfield et al. (1980) “In an extensive array of parallel, equally spaced rods,
a different boundary condition applies. Halfway between any two rods the potential
will be a minimum, corresponding to equally balanced electrical forces perpendicular
to the normal plane between the two rods. We then assume that we can approximate
the polygonally shaped minimum potential surface surrounding any rod by a circu-
lar one with radius R/2, where R is the center-to-center distance between nearest
neighbor rods.” At that distance,(

∂φ

∂ z

)
z=lnκR/2

= 0 (8.34)

We are now in a position to solve the boundary value problem for the potential
as a function of distance from the surface of the DNA helix modeled as a cylindrical
rod. We can first try the shooting method, but find that it fails. However, the functions
bvptwp() and bvpcol() succeed, as shown in Figure 8.21. Note that to change
from bvptwp() to bvpcol(), all that need be done is change the function name in
the code.

1.0 1.5 2.0 2.5 3.0

-0
.2
5

-0
.1
5

-0
.0
5

z

φ

Figure 8.21: Electrostatic potential as a function of distance from the surface of double-
stranded DNA, surrounded by an array of parallel DNA molecules at an average distance
of 3 nm center-to-center.

244 ORDINARY DIFFERENTIAL EQUATIONS

> require(bvpSolve)

> fun = function(z,phi,parms) {

+ dphi1 = phi[2]

+ dphi2 = -1/2*exp(2*z)*(exp(-phi[1])-exp(phi[1]))

+ return(list(c(dphi1,dphi2)))

+ }

> init = c(phi=NA, dphi = 0.84)

> end = c(phi=NA, dphi = 0)

>

> sol = bvptwp(yini = init, x = seq(1,3,len=100), func=fun, yend = end)

>

> z = sol[,1]

> phi = sol[,2]

> plot(z,phi,type="l", ylab=expression(phi))

8.12.3 Bifurcation analysis of Lotka–Volterra model

Lotka–Volterra type models are instructive in elucidating predator–prey relations in
ecology, and are also good models for analyzing the behavior of systems of differen-
tial equations. Here we follow very closely part of a 2003 article by Thomas Petzoldt,
“R as a Simulation Platform in Ecological Modelling”1, which constructs and ana-
lyzes a three-component system and takes the additional useful step of showing how
to display the bifurcation behavior of the model. His treatment is based on a three-
component food web model developed by Blasius et al. (1999) and Blasius and Stone
(2000).

The model consists of three populations: plant resource u, herbivore v, and car-
nivore w. The set of differential equations describing the system is

du
dt

= au−α1 f1(u,v) (8.35)

dv
dt

= −bv + α1 f1(u,v)−α2 f2(v,w) (8.36)

dw
dt

= −c(w−w∗) + α2 f2(v,w) (8.37)

with a logistic interaction term due to Holling

fi(x,y) =
xy

1 + kix
. (8.38)

This interaction term, since it includes saturation, is probably more realistic than the
simpler Lotka–Volterra fi(x,y) = xy. Another refinement that enhances the realism of
the model is w∗, a minimum predator level that stabilizes the population when the
prey population is low by recognizing that predators can consume alternative, albeit
less desirable, prey.

We begin by loading the deSolve package. Petzoldt used the older odesolve
package, which has since been removed from the R library.

1online at http://www.r-project.org/doc/Rnews/Rnews 2003-3.pdf, pp. 8--16

CASE STUDIES 245

> library(deSolve)

We then proceed in the by now familiar way to define the functions for the inter-
actions and for the time derivatives of the populations.
> f = function(x,y,k){x*y/(1+k*x)}

> model = function(t, xx, parms) {

+ u = xx[1] # plant resource

+ v = xx[2] # herbivore

+ w = xx[3] # carnivore

+ with(as.list(parms),{

+ du = a*u - alpha1*f(u, v, k1)

+ dv = -b*v + alpha1*f(u, v, k1) - alpha2*f(v, w, k2)

+ dw = -c*(w - wstar) + alpha2*f(v, w, k2)

+ list(c(du, dv, dw))

+ })}

Next we define the times over which the simulation is to be carried out, the pa-
rameters in the calculation, and the starting values for the three populations.
> times = seq(0, 200, 0.1)

> parms = c(a=1, b=1, c=10, alpha1=0.2, alpha2=1,

+ k1=0.05, k2=0, wstar=0.006)

> xstart = c(u=10, v=5, w=0.1)

We then solve the model using the lsoda method as a function, and extract the
time and population vectors for plotting.
> out = lsoda(xstart, times, model, parms)

> t = out[,1]

> u = out[,2]

> v = out[,3]

> w = out[,4]

We plot the three populations, which appear to oscillate in a rather unpredictable
fashion but more or less in phase with one another (Figure 8.22). Blasius and cowork-
ers call this UPCA (uniform phase, chaotic amplitude) behavior. Note how close w,
the population of carnivores, comes to extinction at times, but is saved by w∗.
> par(mfrow=c(1,3))

> plot(t, u, type="l", lty=1)

> plot(t, v, type="l", lty=1)

> plot(t, w, type="l", lty=1)

> par(mfrow = c(1,1))

We conclude by making a bifurcation diagram, which demonstrates how the dy-
namics of a process splits in two at certain values of a control parameter. In this case
the predator–independent herbivore loss rate b is used as the control parameter. Bi-
furcations occur at the maxima or minima of the predator variable w. Thus, we first
define a function to pick peaks and troughs, at which the amplitudes are greater than,
or less than, their immediate neighbors to left and right.

246 ORDINARY DIFFERENTIAL EQUATIONS

0 50 100 150 200

4
6

8
10

14

t

u

0 50 100 150 200

4
6

8
10

12
14

t
v

0 50 100 150 200

0.
0

0.
4

0.
8

1.
2

t

w

Figure 8.22: Time course of the three-population model of resource u, consumer v, and preda-
tor w, illustrating uniform phase but chaotic amplitude behavior.

> peaks = function(x) {

+ l = length(x)

+ xm1 = c(x[-1], x[l])

+ xp1 = c(x[1], x[-l])

+ x[x > xm1 & x > xp1 | x < xm1 & x < xp1] # Max or min

+ }

We next set up the axes, coordinates, and labeling of a plot, to be filled as the
bifurcation modeling process proceeds.
> plot(0,0, xlim=c(0,2), ylim=c(0,1.5), type="n", xlab="b", ylab="w")

We embed the integration of the system of differential equations in a loop that
varies b.
> for (b in seq(0.02,1.8,0.01)) {

+ parms["b"] = b

+ out = as.data.frame(lsoda(xstart, times,

+ model, parms, hmax=0.1))

Only the last third of the peaks are identified and plotted, to show the behavior at
the end of each simulated time series (Figure 8.23)
+ l = length(out$w) %/% 3

+ out = out[(2*l):(3*l),]

+ p = peaks(out$w)

+ l = length(out$w)

+ xstart = c(u=out$u[l], v=out$v[l], w=out$w[l])

+ points(rep(b, length(p)), p, pch=".")

+ }

We can see that there is “a period-doubling route to chaos followed by a period-
doubling reversal as the control parameter b is increased” (Blasius and Stone, 2000).

CASE STUDIES 247

1.5

1.0

0.5

w

0.0
0.0 0.5 1.0

b
1.5 2.0

Figure 8.23: Bifurcation diagram for the three-population model, with the predator–
independent herbivore loss rate b as the control parameter. Bifurcations occur at the extrema
of the predator variable w.

To complete this series of solutions to the system of differential equations and
plot the points on the bifurcation plot took 69 seconds on a ca. 2012 MacBook Air
laptop.

Chapter 9

Partial differential equations

Partial differential equations (PDEs) arise in all fields of science and engineering. In
contrast to ordinary differential equations, they involve more than one independent
variable, often time and one or more position variables, or several spatial variables.

The most common approach to solving PDEs numerically is the method of lines:
one discretizes the spatial derivatives and leaves the time variable continuous. This
leads to a system of ordinary differential equations to which one of the methods
discussed in the previous chapter for initial value ODEs can be applied.

R has three packages, ReacTran, deSolve, and rootSolve, that together con-
tain most of the tools needed to solve most commonly encountered PDEs. The task
view DifferentialEquations lists resources for PDEs as well as for the various types
of ODEs discussed in the previous chapter.

PDEs are commonly classified into three types: parabolic (time-dependent
and diffusive), hyperbolic (time-dependent and wavelike), and elliptic (time-
independent). We shall give examples of how each of these may be solved with
explicit R code, before showing how the functions in ReacTran, deSolve, and
rootSolve can be used to solve such problems concisely and efficiently.

In preparing the first part of this chapter I have drawn heavily on Garcia, Numer-
ical Methods for Physics, Chs. 6-9. The latter part of the chapter, focusing on the
ReacTran package, is based on the work of Soetaert and coworkers, Solving Dif-
ferential Equations in R and A Practical Guide to Ecological Modelling: Using R
as a Simulation Platform, which—along with the help pages and vignettes for the
package—should be consulted for more details and interesting examples.

9.1 Diffusion equation

The diffusion equation (Fick’s 2nd law) in one spatial dimension,

∂C
∂ t

= D
∂ 2C
∂x2 , (9.1)

is, like the heat conduction equation, a parabolic differential equation. (In the heat
conduction equation, the concentration C is replaced by the temperature T , and the
diffusion coefficient D is replaced by the thermal diffusion coefficient κ .)

249

250 PARTIAL DIFFERENTIAL EQUATIONS

To solve the diffusion equation numerically, a common procedure is to discretize
the time derivative using the Euler approximation

∂C
∂ t
⇒

C(ti +4t,x j)−C(ti,x j)
4t

(9.2)

and the spatial second derivative using the centered approximation.

∂ 2C
∂x2 ⇒

C(ti,x j +4x) +C(ti,x j−4x)−2C(ti,x j)
4x2 (9.3)

Rearranging, we find that the concentration at time point i + 1 can be computed
as follows.

C(i + 1, j) = C(i, j) + A[C(i, j + 1) +C(i, j−1)−2C(i, j)] (9.4)

where
A =

D4t
4x2 (9.5)

This is the equation, along with suitable boundary conditions, that we shall use to
compute the time-evolution of the concentration profile.

The analytic solution to the one-dimensional diffusion equation, in which the
concentration is initially a spike of magnitude C0 at the origin x0 and zero everywhere
else, is well-known to be

C(t,x) =
C0√
2πσ2

exp
[
− (x− x0)2

2σ2

]
(9.6)

where the standard deviation σ is

σ =
〈

(x− x0)2
〉1/2

=
√

2Dt. (9.7)

In other words, the initially very sharp peak broadens with the square root of the
elapsed time. It is this behavior that we shall demonstrate in R. In the code below,
note that the initialization and updating of C maintains the boundary conditions of
C = 0 at the boundaries.

Set the parameters of the diffusion process. An important consideration in choos-
ing the time and distance increments is that the coefficient A = D4t/4x2 must be
≤ 1/2 for the computation to be stable.

> dt=3 #Timestep,s

> dx = .1 # Distance step, cm

> D = 1e-4 # Diffusion coeff, cm^2/s

> (A = D*dt/dx^2) # Coefficient should be < 0.5 for stability

[1] 0.03

Discretize the spatial grid and set the number of time iterations.

WAVE EQUATION 251

time x

C

Figure 9.1: Perspective plot of the evolution of a sharp concentration spike due to diffusion.

> L=1 #Length from -L/2 to L/2

> n = L/dx + 1 # Number of grid points

> x = seq(-L/2,L/2,dx) # Location of grid points

> steps = 30 # Number of iterations

> time = 0:steps

Initialize concentrations to 0 except for the spike at the center of the grid.
> C = matrix(rep(0, (steps+1)*n), nrow = steps+1, ncol = n)

> C[1, round(n/2)] = 1/dx # Initial spike at central point

Loop over time and space variables, building a matrix for the subsequent per-
spective plot.
> # Loop over desired number of time steps

> for(i in 1:(steps-1)) {

+ # Compute new concentration profile at each time #

+ for(j in 2:(n-1)) {

+ C[i+1,j] = C[i,j] + A*(C[i,j+1] + C[i,j-1] - 2*C[i,j])

+ }

+ }

Finally, plot a perspective view of the concentration evolution in space and time
(Figure 9.1).
> persp(time, x, C, theta = 45, phi = 30)

9.2 Wave equation

The one-dimensional wave equation

∂ 2W
∂ t2 = c2 ∂ 2W

∂x2 , (9.8)

252 PARTIAL DIFFERENTIAL EQUATIONS

where W is the displacement and c the wave speed, is a typical example of a hyper-
bolic PDE. A simplified version (see Garcia, p. 216) is the advection equation

∂y
∂ t

=−c
∂y
∂x

, (9.9)

which describes the evolution of the scalar field y(t,x) carried along by a flow of
constant speed c moving to the right if c > 0.The advection equation is the simplest
example of a flux conservation equation.

The analytical solution of the advection equation, with initial condition y(0,x) =
y0(x) is simply y(t,x) = y0(x− ct). However, the numerical solution is by no means
trivial, and in fact the forward- in-t, centered-in-x approach that worked for parabolic
equations does not work for the advection equation.

As in the previous section, we replace the time derivative by its forward Euler
approximation

∂y
∂ t
⇒

y(ti +4t,x j)− y(ti,x j)
4t

(9.10)

and the space derivative by the centered discretized approximation

∂y
∂x
⇒

y(ti,x j +4x)− y(ti,x j−4x)
24x

(9.11)

Combining and rearranging leads to the equation for y at timepoint i + 1,

y(i + 1, j) = y(i, j)− c4t
24x

[y(i, j + 1)− y(i, j−1)] (9.12)

once we provide the initial condition and boundary conditions. We use as initial con-
dition a Gaussian pulse, and impose cyclic boundary conditions, so that grid points
xn and x1 are adjacent.

9.2.1 FTCS method

We first try the forward-in-time, centered-in-space (FTCS) method. Set the parame-
ters to be used in the calculation.
> dt=.002 #Timestep,s

> n = 50 # number of grid points

> L=1 # Length from -L/2 to L/2, cm

> (dx = L/n) # Distance step, cm

[1] 0.02

> v=1 #Wavespeed, cm/s

> (A = v*dt/(2*dx)) # Coefficient

[1] 0.05

> (steps = L/(v*dt)) # Number of iterations

[1] 500

> time = 0:steps

> (tw = dx/v) # Characteristic time to move one step

[1] 0.02

WAVE EQUATION 253

-0.4 0.0 0.2 0.4

0.
0

0.
4

0.
8

x

C

Figure 9.2: Advection of a Gaussian pulse calculated according to the FTCS method.

Set the locations of the grid points and initialize the space-time matrix of con-
centration values.
> x = (1:n - 0.5)*dx - L/2 # Location of grid points

> sig = 0.1 # Standard deviation of initial Gaussian wave

> amp0 = exp(-x^2/(2*sig^2)) # Initial Gaussian amplitude

> C = matrix(rep(0, (steps+1)*n), nrow = steps+1, ncol = n)

> C[1,] = amp0 # Initial concentration distribution

Establish periodic boundary conditions.
> jplus1 = c(2:n,1)

> jminus1 = c(n,1:(n-1))

For the body of the calculation, loop over the desired number of time steps and
compute the new concentration profile at each time.
> for(i in 1:steps) { # Loop over desired number of steps

+ for(j in 1:n) { # Compute new C profile at each time

+ C[i+1,j] = C[i,j] + A*(C[i,jplus1[j]] - C[i,jminus1[j]])

+ }

+ }

Finally, plot the initial and final concentration profiles (Figure 9.2).
> plot(x, C[1,], type = "l", ylab = "C", ylim = c(min(C), max(C)))

> lines(x, C[steps,], lty = 3)

If the advection equation were properly solved by this method, the two wave-
forms should be superimposable. Instead, distortion occurs as the wave propagates.
It can be shown that in fact there is no stable solution for any value of the character-
istic time dx/v.

9.2.2 Lax method

A more successful method, due to Lax, is to replace C[i, j] with the average of its
left and right neighbors. Also, the best result is obtained if the time step is neither

254 PARTIAL DIFFERENTIAL EQUATIONS

-0.4 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C

Figure 9.3: Advection of a Gaussian pulse calculated according to the Lax method.

too large (the calculation becomes unstable) nor too small (the pulse decays as it
progresses). It can be shown that the optimum time step is dt = dx/v. The code is
exactly the same as for the FTCS method, except for the body of the calculation,
where the looping over the desired number of time steps and computation of the new
concentration profile at each time takes place. The result is shown in Figure 9.3.
> # Loop over desired number of steps #

> for(i in 1:steps) {

+ # Compute new concentration profile at each time #

+ for(j in 1:n) {

+ C[i+1,j] = 0.5*(C[i,jplus1[j]] + C[i, jminus1[j]]) +

+ A*(C[i,jplus1[j]] - C[i,jminus1[j]])

+ }

+ }

A still better approach, as explained by Garcia (pp. 222–4), is the Lax–Wendorff
method, which uses a second-order finite difference scheme to treat the time deriva-
tive. This yields Equation 9.13 for the updating of the advection equation:

Ci+1
j = Ci

j−A
(
Ci

j+1−Ci
j−1
)

+ 2A2 (Ci
j+1 +Ci

j−1−2Ci
j
)

(9.13)

9.3 Laplace’s equation

The Laplace equation in two dimensions

∂ 2V
∂x2 +

∂ 2V
∂y2 = 0 (9.14)

is an example of the third type of PDE, an elliptic equation. It arises frequently in
electrostatics, gravitation, and other fields in which the potential V is to be calcu-
lated as a function of position. If there are charges or masses in the space, and if we

LAPLACE’S EQUATION 255

generalize to three dimensions, the equation becomes the Poisson equation

∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2 = f (x,y,z) (9.15)

Depending on the geometry of the problem, the equation may also be written in
spherical, cylindrical, or other coordinates.

To solve an elliptic equation of this type, one must be given the boundary condi-
tions. Typically, these specify that certain points, lines, or surfaces are held at con-
stant values of the potential. Then the potentials at other points are adjusted until the
equation is satisfied to some desired approximation. (In rare cases, the equation with
boundary conditions can be solved exactly analytically; but usually an approximate
solution must suffice.)

There are many approaches to numerical solution of the Laplace equation. Per-
haps the simplest is that due to Jacobi, in which the interior points are successively
approximated by the mean of their surrounding points, while the boundary points
are held at their fixed, specified values. We consider as an example a square plane,
bounded by (0,1) in the x and y directions, in which the edge at y = 1 is held at V = 1
and the other three edges are held at V = 0. We make a rather arbitrary initial guess
for the potentials at the interior points, but these will be evened out as the solution
converges.

In the following code we solve the Laplace equation on a square lattice using the
Jacobi method. We begin by setting the parameters
> n = 30 # Number of grid points per side

> L=1 # Length of a side

> dx = L/(n-1) # Grid spacing

> x = y = 0:(n-1)*dx # x and y coordinates

and making a rather arbitrary initial guess for the voltage profile.
> V0 = 1

> V = matrix(V0/2*sin(2*pi*x/L)*sin(2*pi*y/L),

+ nrow = n, ncol = n, byrow = TRUE)

We set the boundary conditions (V = 0 on three edges of the plate, V = 1 on the
fourth edge:
> V[1,] = 0

> V[n,] = 0

> V[,1] = 0

> V[,n] = V0*rep(1,n)

We make a perspective plot of the initial guess,
> par(mfrow = c(1,2))

> persp(x,y,V, theta = -45, phi = 15)

then proceed with the Jacobi-method calculation.
> ## Loop until desired tolerance is obtained

> newV = V

> itmax = n^2 # Hope that solution converges within n^2 iterations

256 PARTIAL DIFFERENTIAL EQUATIONS

xy

V

xy

V

Figure 9.4: Solution to the Laplace equation with the Jacobi method.

> tol = 1e-4

> for (it in 1:itmax) {

+ dVsum = 0

+ for (i in 2:(n-1)) {

+ for (j in 2:(n-1)) {

+ newV[i,j] = 0.25*(V[i-1,j] + V[i+1,j] + V[i,j-1] + V[i,j+1])

+ dVsum = dVsum + abs(1-V[i,j]/newV[i,j])

+ }

+ }

+ V=newV

+ dV = dVsum/(n-2)^2 # Average deviation from previous value

+ if (dV < tol) break # Desired tolerance achieved

+ }

>

> it # Iterations to achieve convergence to tol

[1] 419

> dV

[1] 9.908314e-05

Finally, we plot the converged solution alongside the initial guess (Figure 9.4).
> persp(x,y,V, theta = -45, phi = 15)

> par(mfrow = c(1,1))

9.4 Solving PDEs with the ReacTran package

Solving of partial differential equations in R can also be done with the ReacTran

package and ancillary packages that it calls. Package ReacTran facilitates modeling
of reactive transport in 1, 2, and 3 dimensions. It “contains routines that enable the

SOLVING PDES WITH THE REACTRAN PACKAGE 257

development of reactive transport models in aquatic systems (rivers, lakes, oceans),
porous media (floc aggregates, sediments, . . .) and even idealized organisms (spheri-
cal cells, cylindrical worms, . . .).” Although ReacTran was developed largely to sup-
port the authors’ research interests in ecological hydrology, its methods are useful
for numerically solving all the standard types of PDEs.

The package contains:
• Functions to set up a finite-difference grid (1D or 2D)
• Functions to attach parameters and properties to this grid (1D or 2D)
• Functions to calculate the advective-diffusive transport term over the grid (1D,

2D, 3D)
• Various utility functions

When ReacTran is loaded, it also loads two support packages that we have pre-
viously encountered: rootSolve and deSolve. To quote from their help pages, the
rootSolve package “solves the steady-state conditions for uni-and multicomponent
1-D, 2-D and 3-D partial differential equations, that have been converted to ODEs by
numerical differencing (using the method-of-lines approach).” The deSolve pack-
age provides “functions that solve initial value problems of a system of first-order
ordinary differential equations (ODE), of partial differential equations (PDE), of dif-
ferential algebraic equations (DAE) and delay differential equations.”

ReacTran also loads the shape package, which provides “functions for plotting
graphical shapes such as ellipses, circles, cylinders, arrows, . . .” However, we shall
not use shape in what follows.

9.4.1 setup.grid.1D

Use of ReacTran generally proceeds in three or four steps. First, the function
setup.grid.1D is used to establish the grid. In the simplest case, this function sub-
divides the one-dimensional space of length L, between x.up and x.down, into N
grid cells of size dx.1. The calling usage is
setup.grid.1D(x.up=0, x.down=NULL, L=NULL, N=NULL, dx.1=NULL, p.dx.1=

rep(1,length(L)), max.dx.1=L, dx.N=NULL, p.dx.N=rep(1,length(L)),

max.dx.N=L)

where
• x.up is the position of the upstream interface
• x.down is the position of the downstream interface
• L = x.down - x.up

• N is the number of grid cells = L/dx.1

In more complex situations, the size of the cells can vary, or there may be more
than one zone. These situations are described in the help page for setup.grid.1D.

The values returned by setup.grid.1D include x.mid, a vector of length N,
which specifies the positions of the midpoints of the grid cells at which the con-
centrations are measured, and x.int, a vector of length (N+1), which specifies the
positions of the interfaces between grid cells, at which the fluxes are measured.

258 PARTIAL DIFFERENTIAL EQUATIONS

The plot function for grid.1D plots both the positions of the cells and the box
thicknesses, showing both x.mid and x.int. The examples on the help page demon-
strate this behavior.

setup.grid.1D serves as the starting point for setup.grid.2D, which creates
a grid over a rectangular domain defined by two orthogonal 1D grids.

9.4.2 setup.prop.1D

Many transport models will involve grids with constant properties. But if some prop-
erty that affects diffusion or advection varies with position in the grid, the variation
can be incorporated with the function setup.prop.1D (or setup.prop.2D in two
dimensions).

Given either a mathematical function or a data matrix, the setup.prop.1D func-
tion calculates the value of the property of interest at the middle of the grid cells and
at the interfaces between cells. The function is called with
setup.prop.1D(func=NULL, value=NULL, xy=NULL, interpolate="spline",

grid, ...)

where
• func is a function that governs the spatial dependency of the property
• value is the constant value given to the property if there is no spatial dependency
• xy is a data matrix in which the first column gives the position, and the second

column gives the values which are interpolated over the grid
• interpolate is the interpolation method (spline or linear)
• grid is the object defined with setup.grid.1D

• . . . are additional arguments to be passed to func

9.4.3 tran.1D

This function calculates the transport terms—the rate of change of concentration due
to diffusion and advection—in a 1D model of a liquid (volume fraction = 1) or a
porous solid (volume fraction may be variable and < 1).

tran.1D is also used for problems in spherical or cylindrical geometries, though
in these cases the grid cell interfaces will have variable areas.

The calling usage for tran.1D is
tran.1D(C, C.up = C[1], C.down = C[length(C)], flux.up = NULL, flux.down

= NULL, a.bl.up = NULL, a.bl.down = NULL, D = 0, v = 0, AFDW = 1, VF = 1,

A = 1, dx, full.check = FALSE, full.output = FALSE)

where
• C is a vector of concentrations at the midpoints of the grid cells.
• C.up and C.down are the concentrations at the upstream and downstream bound-

aries.
• flux.up and flux.down are the fluxes into and out of the system at the upstream

and downstream boundaries.

EXAMPLES WITH THE REACTRAN PACKAGE 259

• If there is convective transfer across the upstream and downstream boundary lay-
ers, a.bl.up and a.bl.down are the coefficients.
• D is the diffusion coefficient, and v is the advective velocity.
• ADFW is the weight used in the finite difference scheme for advection.
• VF and A are the volume fraction and area at the grid cell interfaces.
• dx is the thickness of the grid cells, either a constant value or a vector.
• full.check and full.output are logical flags to check consistency and regu-

late output of the calculation. Both are FALSE by default.
See the help page for details on these inputs.
When full.output = FALSE, the values returned by trans.1D are dC, the

rate of change of C at the center of each grid cell due to transport, and flux.up and
flux.down, the fluxes into and out of the model at the upstream and downstream
boundaries.

ReacTran also has functions for estimating the diffusion and advection terms
in two- and three-dimensional models, and in cylindrical and polar coordinates. The
number of inputs grows with dimension, but the inputs are essentially the same as in
the 1D case. See the help pages for tran.2D, tran.3D, tran.cylindrical, and
tran.polar.

Yet another refinement is the function tran.volume.1D, which estimates the
volumetric transport term in a 1D model. In contrast to tran.1D, which uses fluxes
(mass per unit area per unit time), tran.volume.1D uses flows (mass per unit time).
It is useful for modeling channels for which the cross-sectional area changes, when
the change in area need not be explicitly modeled. It also allows lateral input from
side channels.

9.4.4 Calling ode.1D or steady.1D

Once the grid has been set up and properties assigned to it, and the transport model
has been formulated with tran.1D (or its 2D or 3D analogs), then ReacTran calls
upon ode.1D from the deSolve package if a time-dependent solution is needed, or
steady.1D from the rootSolve package if a steady-state solution is desired. The
system of ODEs resulting from the method of lines approach is typically both sparse
and stiff. The integrators in deSolve, such as “lsoda” (the 1D default method) are
particularly well suited to deal with such systems of equations. If the system of ODEs
is not stiff, then “adams” is generally a good choice of method.

9.5 Examples with the ReacTran package

9.5.1 1-D diffusion-advection equation

Here is a modification of the 1-dimensional diffusion equation solved earlier, done
using the functions in the ReacTran package, and including an advection term. This
might represent, for example, a narrow layer of a small molecule at the top of a

260 PARTIAL DIFFERENTIAL EQUATIONS

solution column, subject both to diffusion and to an electrophoretic field driving it
with velocity v.

Load ReacTran, which also causes loading of its ancillary packages.
> require(ReacTran)

Loading required package: ReacTran

Loading required package: rootSolve

Loading required package: deSolve

Loading required package: shape

Establish the grid, using the setup.grid.1D() function, and supply values for
the parameters.
> N = 100 # Number of grid cells

> xgrid = setup.grid.1D(x.up = 0, x.down = 1, N = N) # Between 0 and 1

> x = xgrid$x.mid # Midpoints of grid cells

> D = 1e-4 # Diffusion coefficient

> v = 0.1 # Advection velocity

Construct the function that defines the diffusion-advection equation.
> Diffusion = function(t, Y, parms) {

+ tran=tran.1D(C=Y,C.up=0,C.down=0,D=D,v=v,dx= xgrid)

+ list(dY = tran$dC, flux.up = tran$flux.up,

+ flux.down = tran $flux.down)

+ }

Initialize the concentration on the grid.
> Yini = rep(0,N) # Initial concentration = 0

> Yini[2] = 100 # Except in the second cell

Now run the calculation for five time units, with a time step of 0.01.
> # Calculate for 5 time units

> times = seq(from = 0, to = 5, by = 0.01)

> out = ode.1D(y = Yini, times = times, func = Diffusion,

+ parms = NULL,dimens = N)

Finally, plot the initial concentration spike and the subsequent concentration dis-
tributions at intervals of 50 time steps (Figure 9.5).
> plot(x,out[1,2:(N+1)], type = "l", lwd = 1, xlab = "x", ylab = "Y")

> # Plot subsequent conc distributions, every 50 time intervals

> for(i in seq(2, length(times), by = 50)) lines(x, out[i, 2:(N+1)])

9.5.2 1-D wave equation

The wave equation 9.8 can be solved in the same way as the diffusion equation by
setting c2 = D, letting W = u and ∂u/∂ t = v, and solving in the now familiar way for
the pair of variables (u,v). Here we consider the 1-D wave equation for a plucked
string, held initially at 0 amplitude for x < −25 and x > 25, and stretched linearly
to a maximum at x = 0. ode.1D is used to solve the set of simultaneous ODEs with
c = 1.

EXAMPLES WITH THE REACTRAN PACKAGE 261

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10
0

x

Y

Figure 9.5: Advection and diffusion of an initially sharp concentration layer.

Load ReacTran and set up the grid.
> require(ReacTran)

> dx = 0.2 # Spacing of grid cells

> # String extends from -100 to +100

> xgrid = setup.grid.1D(x.up = -100, x.down = 100, dx.1 = dx)

> x = xgrid$x.mid # midpoints of grid cells

> N = xgrid$N # number of grid cells

Set initial conditions on string height profile and velocity.
> uini = rep(0,N) # String height vector before stretching

> vini = rep(0,N) # Initial string velocity vector

> displ = 10 # Initial displacement at center of string

> # Impose initial triangular height profile on string between +/- 25

> for(i in 1:N) {

+ if (x[i] > -25 & x[i] <= 0) uini[i] = displ/25*(25 + x[i]) else

+ if (x[i] > 0 & x[i] < 25) uini[i] = displ/25*(25 - x[i])

+ }

> yini = c(uini, vini)

Set the time sequence over which to compute the solution
> times = seq(from = 0, to = 50, by = 1)

Define the function that establishes the displacement and velocity vectors
> wave = function(t,y,parms) {

+ u = y[1:N] # Separate displacement and velocity vectors

+ v = y[(N+1):(2*N)]

+ du=v

+ dv=tran.1D(C=u,C.up=0,C.down=0,D=1,dx=xgrid)$dC

+ return(list(c(du, dv))) }

Solve the equations using ode.1D with the “adams” method. Note the use of the
subset() function to extract the displacement vector u from the result vector.
> out = ode.1D(func = wave, y = yini, times = times,

262 PARTIAL DIFFERENTIAL EQUATIONS

-100 -50 0 50 100
0

2
4

6
8

10

u

x

u

Figure 9.6: Behavior of a plucked string.

+ parms = NULL, method = "adams",

+ dimens = N, names = c("u", "v"))

> u = subset(out, which = "u") # Extract displacement vector

Finally, plot the displacement every 10th time interval (Figure 9.6).
> outtime = seq(from = 0, to = 50, by = 10)

> matplot.1D(out, which = "u", subset = time %in% outtime,

+ grid=x,xlab="x",ylab="u",type="l",

+ lwd = 2, xlim = c(-100,100), col = c("black", rep("darkgrey",5)))

We see that the initial displacement splits in two and propagates symmetrically
to left and right.

9.5.3 Laplace equation

Here we use ReacTran to solve the 2D Laplace equation, treated earlier in this chap-
ter by a different method. In this example the gradient in the y-direction is -1. (The
gradient is just the flux, D(∂C/∂x), with D set equal to 1. The solver is steady.2D,
because there is no time dependence in the equation. As arbitrary initial conditions,
we use Nx×Ny uniformly distributed random numbers. We must also specify nspec,
the number of species in the model (just one, the potential, in this case), dimens, a
2-valued vector with the number of cells in the x and y directions, and lrw, the length
of the real work array. See the help page for steady.2D for more details.

Load ReacTran and set up the grid.
> require(ReacTran)

> Nx = 100

> Ny = 100

> xgrid = setup.grid.1D(x.up = 0, x.down = 1, N = Nx)

> ygrid = setup.grid.1D(x.up = 0, x.down = 1, N = Ny)

> x = xgrid$x.mid

> y = ygrid$x.mid

Specify the function that calculates the evolution of the variables.

EXAMPLES WITH THE REACTRAN PACKAGE 263

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

Figure 9.7: Contour plot of solution to Laplace equation with gradient ∂w/∂y =−1.

> laplace = function(t, U, parms) {

+ w = matrix(nrow = Nx, ncol = Ny, data = U)

+ dw = tran.2D(C = w, C.x.up = 0, C.y.down = 0,

+ flux.y.up = 0,

+ flux.y.down = -1,

+ D.x = 1, D.y = 1,

+ dx = xgrid, dy = ygrid)$dC

+ list(dw) }

Start with uniformly distributed random numbers as initial conditions, then solve
for the steady-state values and make a contour plot of the result (Figure 9.7).
> out = steady.2D(y = runif(Nx*Ny), func = laplace, parms = NULL,

+ nspec = 1, dimens = c(Nx, Ny), lrw = 1e7)

>

> z <- matrix(nr = Nx, nc = Ny, data = out$y)

> contour(z)

9.5.4 Poisson equation for a dipole

Finally, we solve the 2D Poisson equation

∂ 2w
∂x2 +

∂ 2w
∂y2 =− ρ

ε0
(9.16)

for a dipole located in the middle of a square sheet otherwise at 0 potential. For
simplicity, we set all scale factors equal to one. In the definition of the poisson

function, the values in the Nx×Ny matrix w are input through the data vector U. As
in the Laplace equation above, we set the initial values of w at the grid cells equal to
uniformly distributed random numbers.

Load ReacTran and establish the grid.
> require(ReacTran)

264 PARTIAL DIFFERENTIAL EQUATIONS

> Nx = 100

> Ny = 100

> xgrid = setup.grid.1D(x.up = 0, x.down = 1, N = Nx)

> ygrid = setup.grid.1D(x.up = 0, x.down = 1, N = Ny)

> x = xgrid$x.mid

> y = ygrid$x.mid

Find the x and y grid points closest to (0.4, 0.5) for the positive charges, and the
(x,y) grid points closest to (0.6, 0.5) for the negative charges.
> # x and y coordinates of positive and negative charges

> ipos = which.min(abs(x - 0.4))

> jpos = which.min(abs(y - 0.50))

>

> ineg = which.min(abs(x - 0.6))

> jneg = which.min(abs(y - 0.50))

Define the poisson function for the potential and its derivatives.
> poisson = function(t, U, parms) {

+ w = matrix(nrow = Nx, ncol = Ny, data = U)

+ dw = tran.2D(C = w, C.x.up = 0, C.y.down = 0,

+ flux.y.up = 0,

+ flux.y.down = 0,

+ D.x = 1, D.y = 1,

+ dx = xgrid, dy = ygrid)$dC

+ dw[ipos,jpos] = dw[ipos,jpos] + 1

+ dw[ineg,jneg] = dw[ineg,jneg] - 1

+ list(dw) }

Solve for the steady-state potential distribution, and make a contour plot of the
result (Figure 9.8).
> out = steady.2D(y = runif(Nx*Ny), func = poisson, parms = NULL,

+ nspec = 1, dimens = c(Nx, Ny), lrw = 1e7)

>

> z <- matrix(nr = Nx, nc = Ny, data = out$y)

> contour(z, nlevels = 30)

9.6 Case studies

9.6.1 Diffusion in a viscosity gradient

Biochemists and molecular biologists often use sucrose gradients to separate nucleic
acid molecules of different composition. The gradient of sucrose produces gradients
of both density and viscosity. Both of these are important in separation by sedimen-
tation, but here we consider only the effect of viscosity on diffusional flux. Our aim
is to show how to introduce nonuniformity into the properties of the grid. The dif-
fusion coefficient D of a molecule, modeled as a sphere of radius R, is given by the

CASE STUDIES 265

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

Figure 9.8: Contour plot of solution to Poisson equation for a dipole.

Stokes–Einstein equation

D =
kBT

6πηR
(9.17)

where kB is the Boltzmann constant, T the Kelvin temperature, and η the viscosity.
We use the functions in the ReacTran package to show how the viscosity gradient

leads to an asymmetry in the concentration profile of a diffusing molecule in one
dimension.
> require(ReacTran)

We set up a grid in the x-direction with N = 100 cells and 101 interfaces including
the left and right (or up and down) boundaries.
> N=100

> xgrid = setup.grid.1D(x.up=0,x.down=1,N=N)

> x = xgrid$x.mid # Coordinates of cell midpoints

> xint = xgrid$x.int # Coordiates of interfaces

We set the average value of the diffusion coefficient equal to an arbitrary value of
1, and specify a linear viscosity gradient so that the diffusion coefficients at the left
and right sides are 1/4 and 4 times the average value:
> Davg = 1

> D.coeff = Davg*(0.25 +3.75*xint)

A similar linear dependence could be imposed with the ReacTran function p.lin(),
and exponentially or sigmoidally decreasing dependence with p.exp() or p.sig.
See the help pages for details.

We set the initial concentration to a band of width 10 with concentration 0.1 in
the middle of the solution, and concentration 0 elsewhere.
> Yini = rep(0,N); Yini[45:55] = 0.1

We set the time scale using the result, established by Einstein in his theory of
Brownian motion, that the mean-square distance diffused by a Brownian particle in
time t is

< x2 >= 2Dt. (9.18)

266 PARTIAL DIFFERENTIAL EQUATIONS

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

C

Figure 9.9: Concentration profile of a substance in a viscosity gradient.

In our case, the mean-square distance from the middle to either end of the solution
is 1/4, so we set the maximum time for the simulation as tmax = 1/8. We then divide
the simulation into 100 time steps.
> tmin = 0; tmax = 1/(8*Davg)

> times = seq(tmin, tmax,len=100)

We now define the function, Diffusion(), that gives the time-derivatives of the
concentration (the fluxes):
> Diffusion = function(t,Y,parms){

+ tran = tran.1D(C=Y,D=D.coeff, dx=xgrid)

+ list(dY = tran$dC, flux.up = tran$flux.up,

flux.down=tran$flux.down)

+ }

Having made all the necessary preparations, we invoke the differential equation
solver ode.1D(), which most likely calls its default method, lsoda.
> out = ode.1D(y=Yini, times=times, func=Diffusion, parms=NULL,

dimens=N)

The result, out, is a matrix in which column 1 gives the time and columns 2
to N + 1 the concentrations at the midpoints of the N cells. We first plot the initial
concentration profile in row 1 of out. We then use lines() plot the concentration
profiles at subsequent times spaced to give roughly equal diffusion distances, con-
sidering the square-root dependence of average diffusion distance on time (Figure
9.9).
> plot(x, out[1,2:(N+1)],type="l",xlab="x",ylab="C",

ylim=c(0,0.1))

> for (i in c(2,4,8,16,32)) lines(x,out[i,2:(N+1)])

Note the asymmetry in the concentration profile, with more material accumulating to
the right, where the viscosity is lower and the diffusion coefficient higher.

CASE STUDIES 267

9.6.2 Evolution of a Gaussian wave packet

The familiar time-dependent Schrödinger equation in one dimension,

ih̄
∂ψ(x, t)

∂ t
= Hψ =− h̄2

2m
∂ 2ψ

∂x2 +V (x)ψ (9.19)

is an example of a diffusion-advection equation. H is the Hamiltonian. With the
potential V (x) = 0, Equation 9.19 has the form of Fick’s second law of diffusion,
with the diffusion coefficient ih̄/2m.

We show how this equation can be solved numerically using the ReacTran pack-
age to calculate the evolution of probability density of a Gaussian wave packet in free
space. Part of the interest in this calculation is in showing how complex numbers are
handled in R. Our treatment is adapted from Garcia (2000), pp. 287–293.

We begin by loading ReacTran and defining the constants and the lattice on
which the calculation will be carried out.
> hbar = 1; m = 1

> D = 1i*hbar/(2*m)

> require(ReacTran)

> N = 131

> L = N-1

> xgrid = setup.grid.1D(-30,100,N=N)

> x = xgrid$x.mid

Next we define the function, Schrodinger, by which the derivative will be cal-
culated and updated.
> Schrodinger = function(t,u,parms) {

+ du = tran.1D(C = u, D = D, dx = xgrid)$dC

+ list(du)

+ }

For the simplest calculation, we choose a Gaussian wave packet

ψ(x, t = 0) = (σ0
√

π)−1/2eik0xe−(x−x0)2/2σ
2
0 (9.20)

initially centered at x0, moving in the positive direction with wave number k0 = mv/h̄,
and standard deviation of the packet width σ0. The wave function is appropriately
normalized. We give values for these parameters in arbitrary units:
> # Initialize wave function

> x0 = 0 # Center of wave packet

> vel = 0.5 # Mean velocity

> k0 = m*vel/hbar # Mean wave number

> sig0 = L/10 # Std of wave function

We then calculate the normalization and the initial magnitude of the wave func-
tion as a function of x, and plot the result, showing both real and imaginary parts
(Figure 9.10).

268 PARTIAL DIFFERENTIAL EQUATIONS

-20 0 20 40 60 80 100-0
.2

-0
.1

0.
0

0.
1

0.
2

x

ψ
(x
)

Re

Im

Figure 9.10: Real and imaginary parts of a Gaussian wave packet.

> A = 1/sqrt(sig0*sqrt(pi)) # Normalization coeff

> psi = A*exp(1i*k0*x)*exp(-(x-x0)^2/(2*sig0^2))

> # Plot initial wavefunction

> Re_psi = Re(psi); Im_psi = Im(psi)

> plot(x,Re_psi,type="l", lty=1,ylab=expression(psi(x))

> lines(x,Im_psi,lty=2)

> legend("bottomright", bty="n", legend=c("Re","Im"), lty=1:2)

All of this is preliminary to our ultimate goal, calculating the time-dependent
probability density of the Gaussian wave packet. This we do by solving the diffusion
equation with ode.1D, using the “adams” method because it is more efficient for this
non-stiff equation.
> times = 0:120

> print(system.time(

+ out <- ode.1D(y=psi0, parms=NULL, func=Schrodinger,

+ times=times, dimens=130, method = "adams")

+))

user system elapsed

0.189 0.001 0.192

We then plot the probability density of the wave packet, P(x, t) = ψ∗(x, t)ψ(x, t),
using the Conj() function in R to get the complex conjugate of the wave function
vector.
> pdens0 = Re(out[1,2:(N+1)]*Conj(out[1,2:(N+1)]))

> plot(x, pdens0, type = "l",

+ ylim = c(0, 1.05*max(pdens0)), xlab="x",

+ ylab = "P(x,t)", xaxs="i", yaxs="i")

and then plot every 20th curve thereafter.
> for (j in seq(20,120,20)) {

+ pdens = Re(out[j,2:(N+1)]*Conj(out[j,2:(N+1)]))

CASE STUDIES 269

-20 0 20 40 60 800.
00

0.
01

0.
02

0.
03

0.
04

x

P
(x
,t)

Figure 9.11: Time evolution of the probability density of a Gaussian wave packet.

+ lines(x, pdens)

+ }

Note that the xaxs="i" and yaxs="i" options set the limits of the plot (Figure
9.11) equal to the numerical limits, rather than leaving a little space at each margin.
However, we set the upper y-axis limit as slightly larger than the amplitude of the
zero-time probability density.

9.6.3 Burgers equation

The Burgers equation for the time and space dependence of the fluid velocity u,

∂u
∂ t

= D
∂ 2u
∂x2 − vu

∂u
∂x

, (9.21)

arises in fluid mechanics modeling of nonlinear phenomena such as gas dynamics
and traffic flow. Formally, it resembles a diffusion-advection equation, but with the
advection term multiplied by the velocity. We show how to solve it numerically with
ReacTran, for simplicity setting the dispersion coefficient D and viscosity v equal to
one.
> require(ReacTran)

> D = 1; v = 1

We set up the grid in the now familiar way, to be used in both the diffusion and
advection parts of the calculation.
> N = 100

> xgrid = setup.grid.1D(x.up = -5, x.down = 5, N = N)

> x = xgrid$x.mid

We set the initial velocity equal to +1 for x < 0, and to -1 for x > 0, and consider
only the early portion of the process with a small time increment.
> uini = c(rep(1,N/2), rep(-1,N/2))

> times = seq(0,1,by = .01)

270 PARTIAL DIFFERENTIAL EQUATIONS

We now define the function, Burgers(), that calculates the derivative of u for
passage to the ode solver. The boundary conditions C.up and C.down are consistent
with the initial conditions. Note how we have calculated the diffusion and advection
contributions separately, and combined them at the end.
> Burgers = function(t,u,parms) {

+ tran = tran.1D(C = u, C.up = 1, C.down = -1, D = D,

dx = xgrid)

+ advec = advection.1D(C = u, C.up = 1, C.down = -1, v = v,

dx = xgrid)

+ list(du = tran$dC + u*advec$dC)

+ }

We feed the results from Burgers(), along with the initial conditions, into the
ode.1D solver, accepting the default lsoda method, to generate the matrix out.
> print(system.time(

+ out <- ode.1D(y = uini, parms = NULL, func = Burgers,

times = times, dimens = N)

+))

user system elapsed

0.226 0.013 0.245

Each row of out corresponds to a time increment, with the first column contain-
ing the time and the next N rows the velocity at the positions specified by xgrid. We
set up a 1×2 plot layout, so we can compare the results of the ReacTran calculation
with those of an analytical result to follow (Figure 9.12). We use plot() in the left
panel to display the initial velocity distribution, and then lines() at four subsequent
times to display the evolving distribution.
> par(mfrow=c(1,2))

> plot(x, out[1,2:(N+1)], type="l",

+ xlab = "x", ylab = "u")

> for (i in c(10,20,50,80))

+ lines(x, out[i,2:(N+1)])

Our numerical result can be compared with the exact solution in the limit L→∞
(Garcia, 2000, p. 294):

u(x, t) = v
F(x, t)−F(−x, t)
F(x, t) + F(−x, t)

(9.22)

where

F(x, t) =
1
2

et−x
[

1− erf
(

x−2t
2
√

t

)]
. (9.23)

and erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−t2

dt (9.24)

which is calculated in the pracma package as
erf(x) = 2*pnorm(sqrt(2)*x) - 1

CASE STUDIES 271

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

u

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

u

Figure 9.12: Solution of the Burgers Equation 9.21 with ReacTran (left) and exact solu-
tion for L→∞ (right).

where pnorm in R is the distribution function for the normal distribution. We load
pracma, define the functions in equations 9.22 and 9.23,
> require(pracma)

> Fn = function(t,x) 1/2*exp(t-x)*(1-erf((x-2*t)/(2*sqrt(t))))

> u = function(t,x) (Fn(t,x)-Fn(t,-x))/(Fn(t,x)+Fn(t,-x))

set up the time and space array as above,
> t = seq(0,1,.01)

> L = 10

> x = seq(-L/2,L/2,len=100)

initialize the matrix M to hold the results,
> M = matrix(rep(0,length(t)*length(x)),nrow=length(t))

perform the calculations,
> for (i in 1:length(t)) {

+ for (j in (1:length(x))) {

+ M[i,j] = u(t[i],x[j])

+ }

+ }

and plot the results in the right panel of Figure 9.12.
> plot(x, M[1,], type = "l", ylab="u")

> for (i in c(10,20,50,80)) lines(x, M[i,])

Agreement between the two modes of calculation is excellent at first, but the
results diverge slightly as time proceeds. This may be both because of accumulating
numerical imprecision in the ReacTran calculation, and because Equation 9.22 is no
longer exact as the initial discontinuity spreads toward the limits.

Chapter 10

Analyzing data

In the final two chapters we focus on data analysis, a topic for which R is particularly
well-suited—indeed, for which it was initially developed and about which most of the
literature on R is concerned. However, rather than refer the reader to other resources,
it seems reasonable to present here at least a brief survey of some of the major topics,
recognizing that scientists and engineers generally spend much of their time dealing
with real data, not just developing numerical simulations.

We begin in this chapter by showing how to get data into R from external files,
and how to structure data in data frames. We then turn to standard statistical topics
of characterizing a univariate dataset, comparing two datasets, determining goodness
of fit to a theoretical model, and determining the correlation of two variables. Fi-
nally, we introduce two methods of exploratory data analysis—principal component
analysis and cluster analysis—which are crucial in making sense of large datasets.

10.1 Getting data into R

The first task is to get the data into R. Small datasets can simply be entered by hand as
vectors representing the independent and dependent variables. But some datasets are
quite large, and if they already exist in digitized form, in spreadsheets or on the Web,
effort and errors will be minimized if they can be read into R directly. Since most such
data are probably available in tabular form, the key R function is read.table().

To use this function requires consideration of where the data file is stored and
in what format. By default, R puts files in the user’s home directory, which—unless
instructed otherwise—considers the working directory. To find out the address of
the working directory, type getwd() at the R prompt. The working directory can be
changed with setwd(). For example, the sequence of commands
> getwd()

[1] "/Users/victor"

> setwd("~/Desktop")

> getwd()

[1] "/Users/victor/Desktop"

> setwd("~/")

shows that the working directory on my Macintosh is the same as my home directory,

273

274 ANALYZING DATA

sets the new working directory to my desktop, verifies the change, and changes back
to the home directory.

To maintain the current working directory, but to access a file in an-
other directory, give the path to the file from the working directory, e.g.,
~/Desktop/NIST/lanczos3.txt if the desired file lanczos3.txt is located in
the NIST folder on my desktop.

If the entries in the file are in tabular form separated by spaces, and the columns
have headers, then the file can be read into R as a data frame (see later in this chapter)
by the command
lan = read.table("~/Desktop/NIST/lanczos3.txt", header=TRUE)

The default is header = FALSE, with entries separated by spaces. If the entries
were separated by tabs or commas, include the option sep = "\t" or sep = ","

in read.table(). Alternatively, since comma-separated (csv) files are a common
format of files exported from spreadsheets, one may use read.csv() for those files.
Consult the help file ?read.table for a complete description of the usage of these
commands.

Conversely, if we have calculated a vector, matrix, or other array of data called
my.data, and wish to save it in the file my file on the desktop, we do so with the
function
> write.table(my.data, file="~/Desktop/my_file")

Such a file can be imported by a spreadsheet.

10.2 Data frames

Experimental studies commonly arrange data in tables, with each row corresponding
to a single experimental instance (subject, time point, etc.) and each column spec-
ifying a given type of measurement or condition. In R, such a construct is called a
“data frame.” Each column is a vector containing entries of the same class (numeric,
logical, or character), and all columns must be of the same length (i.e., the same
measurements were performed on all subjects). (If an entry is missing, it is generally
replaced by NA.) A column may contain either data or factors: categorial variables
that indicate subdivisions of the dataset.

For example, chickwts, in the package datasets installed with base R, is a
data frame with 71 observations on 2 variables: weight, a numeric variable giving
the chick weight, and feed: a factor giving the feed type.
> head(chickwts)

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

5 217 horsebean

6 168 horsebean

SUMMARY STATISTICS FOR A SINGLE DATASET 275

casein horsebean linseed meatmeal soybean sunflower

10
0

20
0

30
0

40
0

Figure 10.1: Box plot of chick weights according to feed type.

In this example, the head() function displays just the first six rows of the data
frame. In general, head(x,n) displays the first n (default = 6) rows of the object x,
which may be a vector, matrix, or data frame. Likewise, the tail() function displays
the last rows of the object.

The columns of a data frame may be specified with the $ operator:
> class(chickwts$feed)

[1] "factor"

> class(chickwts$weight)

[1] "numeric"

A handy function to summarize measurements grouped by factor is tapply, in
which the first argument is the measurement to be summarized, the second is the
factor on which grouping is to be done, and the third is the function to be applied
(mean, summary, sum, etc.).

> options(digits=1)

> tapply(chickwts$weight, chickwts$feed, mean)

casein horsebean linseed meatmeal soybean sunflower

324 160 219 277 246 329

The boxplot function provides a handy graphical overview of the distribution
of measurements grouped by factor (Figure 10.1).
> boxplot(chickwts$weight ~ chickwts$feed)

10.3 Summary statistics for a single dataset

Investigators often make repeated measurements of a quantity, to determine some sort
of average and distribution of values. R provides powerful tools to characterize such
a dataset. As an example, consider the classical data of Michelson and Morley on the
measurement of the speed of light. These data are found in the data frame morley in
the base R installation. The data consists of five experiments, each consisting of 20
consecutive runs. The data frame reports the experiment number (a factor), the run
number (a factor), and a quantity proportional to the speed of light (numeric).

276 ANALYZING DATA

> head(morley)

Expt Run Speed

001 1 1 850

002 1 2 740

003 1 3 900

004 1 4 1070

005 1 5 930

006 1 6 850

We will later compare individual experiments, but for now consider all measure-
ments of Speed as constituting a single vector speed, which we want to characterize
statistically.
> speed = morley$Speed

The summary function gives the range (minimum, maximum), the first and third
quartiles, the median and the mean. Unfortunately, it does not give the standard de-
viation sd, which must be calculated separately.
> summary(speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.

620 808 850 852 892 1070

> sd(speed)

[1] 79.01

To get a visual impression of the distribution of speed measurements, we plot
the histogram (Figure 10.2). To see how closely the distribution approximates a nor-
mal distribution, we use a qqnorm plot, which plots the quantiles from the observed
distribution against the quantiles of a theoretical distribution (a normal distribution
in this case). If the approximation is good, the points should lie on a line (qqline)
running at 45 degrees from lower left to upper right.
> par(mfrow=c(1,2))

> hist(speed)

Histogram of speed

speed

Fr
eq
ue
nc
y

600 800 1000

0
5

15
25

-2 -1 0 1 2

70
0

90
0

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 10.2: Histogram and qqplot of Michelson–Morley data.

STATISTICAL COMPARISON OF TWO SAMPLES 277

1 2 3 4 5

70
0

80
0

90
0

Figure 10.3: Comparison of speed measurements in five sets of Michelson–Morley
experiments.

> qqnorm(speed)

> qqline(speed)

10.4 Statistical comparison of two samples

A common statistical task is to judge whether two samples are significantly different
from one another (e.g., the weight gains of two sets of animals raised on different
feeds, corrosion resistance of samples of a treated metal relative to untreated controls,
etc.) We can use different experiment sets in the morley data to illustrate. We use
the boxplot function to visualize the distribution of Speed in each of the five Expt
sets (Figure 10.3):
> boxplot(morley$Speed ~ morley$Expt)

Sets 1 and 5 look the most different, so we separate them out from the complete
data frame using the subset() function,
> morley1 = subset(morley, Expt == 1, Speed)

> morley5 = subset(morley, Expt == 5, Speed)

and apply Student’s t-test—which tests the null hypothesis that the difference in
means of the two datasets is equal to 0—to the speed vectors of each subsetted
data frame.
> t.test(morley1$Speed, morley5$Speed)

Welch Two Sample t-test

data: morley1$Speed and morley5$Speed

t = 2.935, df = 28.47, p-value = 0.006538

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

23.44 131.56

sample estimates:

278 ANALYZING DATA

5 6 7 8 9

0
50

10
0

15
0

Figure 10.4: Box plots of ozone level by months 5–9.

mean of x mean of y

909.0 831.5

The test indicates that the means of the two experimental sets are significantly dif-
ferent at the p = 0.0065 level; that is, the null hypothesis has only a probability of
0.0065 of being correct by chance.

Several variants of the t test should be noted. The example above is a two-sample,
unpaired, two-sided test. A one-sample t test compares a single sample against a
hypothetical mean mu, e.g. t.test(morley$Speed, mu = 850). In a paired t test,
the individuals in each sample are related in some way (e.g., IQ of identical twins,
Young’s modulus of several steel bars before and after heat treatment, etc.). In such
a case, the argument paired = TRUE should be specified. A two-sided test is one in
which the mean of one sample can be either greater or less than that of the other. If it
is desired to test whether the mean of sample 1 is greater than that of sample 2, use
alternative = "greater", and similarly for "less". See ?t.test for details.

The t test applies rigorously only if the variation in the vectors is normally dis-
tributed. We saw that was essentially the case with the morley data, but not all data
behave so nicely. Consider, for example, the airquality dataset in the base R in-
stallation (Figure 10.4).

> boxplot(Ozone ~ Month, data = airquality)

Suppose we want to test the hypothesis that the mean ozone levels in months 5
and 8 are equal. A histogram and qqnorm plot of the month 5 data show a distinctly
non-normal distribution of ozone level occurrences (Figure 10.5); the same is true
for month 8.
> airq5 = subset(airquality, Month == 5)

> par(mfrow=c(1,2))

> hist(airq5$Ozone)

> qqnorm(airq5$Ozone)

CHI-SQUARED TEST FOR GOODNESS OF FIT 279

Histogram of airq5$Ozone

airq5$Ozone

Fr
eq
ue
nc
y

0 40 80 120

0
5

10
15

-2 -1 0 1 2

0
40

80

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
Figure 10.5: Histogram and qqplot of ozone levels in month 5.

In this case, the Wilcoxon (also known as Mann–Whitney) rank-sum test is more
appropriate than the t test. Executing the example in the help page for wilcox.test,
we obtain
> wilcox.test(Ozone ~ Month, data = airquality,

+ subset = Month %in% c(5, 8))

Wilcoxon rank sum test with continuity correction

data: Ozone by Month

W = 127.5, p-value = 0.0001208

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(41L, 36L, 12L, 18L, 28L, 23L, 19L, :

cannot compute exact p-value with ties

so there is only a probability of one part in 104 that the means are equal.

10.5 Chi-squared test for goodness of fit

Pearson’s chi-square test examines the null hypothesis that the frequency distribu-
tion of certain events observed in a sample is consistent with a particular theoretical
distribution. For example, suppose that a biochemist measures the number of DNA
base pairs (A,T,G,C) in a 100-base pair sample and comes up with the values in x:
> x = c(20,30,28,22)

In the DNA solution overall, the probability of each of the four bases is 1/4.
> p = rep(1/4,4)

Is the sample representative of the overall solution?
> chisq.test(x, p = p)

Chi-squared test for given probabilities

data: x

280 ANALYZING DATA

0 20000 40000 60000 80000

0
10
00

30
00

50
00

Animals$body

A
ni
m
al
s$
br
ai
n

1e-01 1e+01 1e+03 1e+05

5e
-0
1

5e
+0
0

5e
+0
1

5e
+0
2

5e
+0
3

Animals$body
A
ni
m
al
s$
br
ai
n

Figure 10.6: Linear and log-log plots of brain weight vs. body weight, from MASS dataset
Animals.

X-squared = 2.72, df = 3, p-value = 0.4368

The sample appears to be adequately representative.

10.6 Correlation

We are often interested in whether, and to what extent, two sets of data are correlated
with one another. Correlation may, but need not, imply a causal relation between
the variables. There are three standard measures of correlation: Pearson’s product-
moment coefficient, and rank correlation coefficients due to Spearman and Kendall.
R gives access to all of these via the cor.test function, with Pearson’s as the de-
fault.

We demonstrate the use of the cor.test function via the Animals dataset in the
MASS package. It is almost always useful to first graph the data (Figure 10.6).
> require(MASS)

> par(mfrow=c(1,2))

> plot(Animals$body, Animals$brain)

> plot(Animals$body, Animals$brain, log="xy")

We see that because of a few outliers (elephants, humans), the linear plot is not
very informative, but the log-log plot shows a strong correlation between body weight
and brain weight. However, when we use the linear data with the default (Pearson)
cor.test, we find virtually no correlation because of the strong influence of the out-
liers.

> cor.test(Animals$body, Animals$brain)

Pearson’s product-moment correlation

data: Animals$body and Animals$brain

PRINCIPAL COMPONENT ANALYSIS 281

t = -0.0272, df = 26, p-value = 0.9785

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.3777 0.3685

sample estimates:

cor

-0.005341

On the other hand, the rank correlation methods give more sensible results.
> cor.test(Animals$body, Animals$brain, method="spearman")

Spearman’s rank correlation rho

data: Animals$body and Animals$brain

S = 1037, p-value = 1.813e-05

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.7163

Warning message:

In cor.test.default(Animals$body, Animals$brain, method = "spearman") :

Cannot compute exact p-values with ties

> cor.test(Animals$body, Animals$brain, method="kendall")

Kendall’s rank correlation tau

data: Animals$body and Animals$brain

z = 4.604, p-value = 4.141e-06

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.6172

Warning message:

In cor.test.default(Animals$body, Animals$brain, method = "kendall") :

Cannot compute exact p-value with ties

10.7 Principal component analysis

Principal component analysis uses an orthogonal transformation (generally singu-
lar value or eigenvalue decomposition) to convert a set of observations of possibly
correlated variables into a set of uncorrelated (orthogonal) variables called principal
components. The transformation is defined such that the first principal component
has as high a variance as possible (i.e., accounts for as much of the variability in the
data as possible), and each succeeding component in turn has the highest variance
possible under the constraint that it be orthogonal to the preceding components.

282 ANALYZING DATA

In R, principal component analysis is generally carried out with the prcomp()

function. We illustrate its use with the iris dataset in the base R installation. (Type
?iris for a description of the dataset.) The output below shows how the four nu-
merical variables are transformed into four principal components. Scaling the data is
probably not necessary in this case, since all four measurements have the same units
and are of similar magnitudes. However, it is generally a good practice.

> iris1 = iris[, -5] # Remove the non-numeric species column.

> iris1_pca = prcomp(iris1, scale = T)

> iris1_pca

Standard deviations:

[1] 1.7084 0.9560 0.3831 0.1439

Rotation:

PC1 PC2 PC3 PC4

Sepal.Length 0.5211 -0.37742 0.7196 0.2613

Sepal.Width -0.2693 -0.92330 -0.2444 -0.1235

Petal.Length 0.5804 -0.02449 -0.1421 -0.8014

Petal.Width 0.5649 -0.06694 -0.6343 0.5236

The summary function gives the proportion of the total variance attributable to
each of the principal components, and the cumulative proportion as each component
is added in. We see that the first two components account for more than 95% of the
total variance.

> summary(iris1_pca)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.71 0.956 0.3831 0.14393

Proportion of Variance 0.73 0.229 0.0367 0.00518

Cumulative Proportion 0.73 0.958 0.9948 1.00000

The histogram (the result of plot in a prcomp analysis) graphically recapitu-
lates the proportions of the variance contributed by each principal component, while
the biplot shows how the initial variables are projected on the first two principal
components (Figure 10.7). It also shows (albeit illegibly at the printed scale) the co-
ordinates of each sample in the (PC1, PC2) space. One species of iris (which turns
out to be setosa from the cluster analysis below) is distinctly separated from the other
two species in this coordinate space.

> par(mfrow=c(1,2))

> plot(iris1_pca)

> biplot(iris1_pca, col = c("gray", "black"))

> par(mfrow=c(1,1))

See the Multivariate Statistics task view in CRAN for more information and op-
tions.

CLUSTER ANALYSIS 283

iris1_pca

V
ar
ia
nc
es

0.
0
0.
5
1.
0
1.
5
2.
0
2.
5

-0.2 -0.1 0.0 0.1 0.2
-0
.2

-0
.1

0.
0

0.
1

0.
2

PC1

P
C
2

1

2
34

5

6

78

9
10

11

12

1314

15

16

17

18

1920

21
22

23
2425

26

27
2829
3031

32

33
34

3536

3738

39

4041

42

43

44
45

46

47

48

49

50

515253

54

55
56

57

58

59

60

61

62

63

6465

66

67
68

69
70

71

72
73

74
75
76
77
78

79

80
8182

8384
85

86
87

88

89

9091

92

93

94

95
969798

99

100

101

102

103
104
105
106

107

108

109

110

111

112

113

114

115

116
117

118

119

120

121

122

123

124

125126

127
128129

130
131

132

133134
135

136137
138
139
140141142

143

144145
146

147

148

149

150

-10 -5 0 5 10

-1
0

-5
0

5
10

Sepal.Length

Sepal.Width

Petal.LengthPetal.Width

Figure 10.7: Principal component (prcomp) analysis of iris data.

10.8 Cluster analysis

Cluster analysis attempts to sort a set of objects into groups (clusters) such that ob-
jects in the same cluster are more similar to each other than to those in other clusters.
It is used for exploratory analysis via data mining in many fields, such as bioinfor-
matics, evolutionary biology, image analysis, and machine learning.

According to Wikipedia: “Cluster analysis itself is not one specific algorithm,
but the general task to be solved. It can be achieved by various algorithms that dif-
fer significantly in their notion of what constitutes a cluster and how to efficiently
find them. Popular notions of clusters include groups with low distances among the
cluster members, dense areas of the data space, intervals or particular statistical dis-
tributions. The appropriate clustering algorithm and parameter settings (including
values such as the distance function to use, a density threshold or the number of
expected clusters) depend on the individual dataset and intended use of the results.
Cluster analysis as such is not an automatic task, but an iterative process of knowl-
edge discovery that involves trial and failure. It will often be necessary to modify
preprocessing and parameters until the result achieves the desired properties.”

The Cluster (Cluster Analysis & Finite Mixture Models) task view in CRAN
divides clustering methods into three main approaches: hierarchical, partitioning, and
model-based. We give examples of the first two approaches.

10.8.1 Using hclust for agglomerative hierarchical clustering

Hierarchical clustering builds a hierarchy of clusters, where the metric of hierarchy
is some measure of dissimilarity between clusters. According to the help page for
hclust, an agglomerative hierarchical clustering method, “This function performs

284 ANALYZING DATA

10
8

13
1
10
3

12
6

13
0

11
9

10
6

12
3

11
8

13
2 11
0

13
6

14
1

14
5

12
5

12
1

14
4 10
1

13
7

14
9

11
6

11
1

14
8

11
3

14
0

14
2

14
6 10
9

10
4

11
7

13
8

10
5

12
9

13
3
15
0 71

12
8

13
9 11
5

12
2

11
4

10
2

14
3 1
35

11
2

14
7

12
4

12
7 73 84 13
4 12
0

69 88 66 76 7
7

55 59 7
8

87 51 53 8
6

52 57 75 98 7
4

79 64 92
61 99 58 94
10
7

67 85 5
6 91 6
2 72 68 83 93 95 10
0 89 96 97
63

65 80 6
0

54 90 70 81 82
42

30 31 26 10 35 1
3 2 46 3
6 5 38 28 29 41 1 18 5
0 8 40
23 7 43 3 4 48 1
4 9 39 1
7
33 34 1
5 16 6 19 21 32 37 11 49 4
5

47 20 22 4
4 24 27 1
2 25

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
iris1_dist

H
ei
gh
t

Figure 10.8: Hierarchical cluster analysis of iris data using hclust.

a hierarchical cluster analysis using a set of dissimilarities for the n objects being
clustered. Initially, each object is assigned to its own cluster and then the algorithm
proceeds iteratively, at each stage joining the two most similar clusters, continuing
until there is just a single cluster. At each stage distances between clusters are recom-
puted by the Lance–Williams dissimilarity update formula according to the particu-
lar clustering method being used.” There are seven agglomeration methods available,
with complete—which searches for compact, spherical clusters—as the default. See
help(hclust) for details.
> iris1_dist = dist(iris1) # Uses default method

> plot(hclust(iris1_dist))

10.8.2 Using diana for divisive hierarchical clustering

According to the diana (DIvisive ANAlysis Clustering) help page in the cluster

package, “The diana-algorithm constructs a hierarchy of clusterings, starting with
one large cluster containing all n observations. Clusters are divided until each cluster
contains only a single observation. At each stage, the cluster with the largest diameter
is selected. (The diameter of a cluster is the largest dissimilarity between any two of
its observations.)” (See Figure 10.9)
> library(cluster)

> hierclust = diana(iris1)

> plot(hierclust,which.plots=2, main="DIANA for iris")

CLUSTER ANALYSIS 285

1 18 28 29 8 40 5 38 4
1 24 27 44 2
1 32 3
7

11 49 20 22 4
7 45 6 19 1
7 33 1
5

16 34 2 46 13 10 35 3
1 26 36 50 3 48 4 30
7 12 25 9 39 4
3 14
23 4
2

58 94 9
9

51 53 87 7
7

55 59 66 76 5
2 57 8
6

64 92 7
9 74 75 98
88

69 12
0
73 84 13
4

12
4

12
7

14
7
71

12
8

13
9

15
0

10
2

14
3
11
4

12
2 11
5

54 90 70 81 82
60 65 80
63 6
1

56 91 67 85 6
2 72 68 83 93 89 96 97 95 10
0
10
7

78
11
1

14
8

10
4

11
7

13
8

12
9

13
3 11
2 10
9

13
5

13
0

10
1

11
6

13
7

14
9 10
3

10
5

12
1

14
4

14
1

14
5

12
5

11
3

14
0

14
2

14
6

10
6

12
3 11
9

10
8

13
1

12
6
13
6

11
0

11
8

13
2

0
2

4
6

DIANA for iris

Divisive Coefficient = 0.95
iris1

H
ei
gh
t

Figure 10.9: Divisive hierarchical cluster analysis of iris data using diana.

10.8.3 Using kmeans for partitioning clustering

k-means clustering partitions n observations into k clusters in which each observation
belongs to the cluster with the nearest mean. The user must specify the number of
centers (clusters) desired as output.
> iris1_kmeans3 = kmeans(iris1, centers = 3)

> table(iris1_kmeans3$cluster)

1 2 3

96 21 33

> ccent = function(cl) {

+ f = function(i) colMeans(iris1[cl==i,])

+ x = sapply(sort(unique(cl)), f)

+ colnames(x) = sort(unique(cl))

+ return(x)

+ }

> ccent(iris1_kmeans3$cluster)

1 2 3

Sepal.Length 6.315 4.7381 5.1758

286 ANALYZING DATA

Sepal.Width 2.896 2.9048 3.6242

Petal.Length 4.974 1.7905 1.4727

Petal.Width 1.703 0.3524 0.2727

10.8.4 Using pam for partitioning around medoids

pam partitions the data into k clusters around medoids. The medoid of a finite set of
data is the data point whose average dissimilarity to all the data points is a minimum.
That is, it is the most centrally located point in the set. According to the pam help
page, the k-medoids approach is more robust than the k-means approach “because it
minimizes a sum of dissimilarities instead of a sum of squared euclidean distances”

> require(cluster)

Loading required package: cluster

> pam(iris1, k=3)

Medoids:

ID Sepal.Length Sepal.Width Petal.Length Petal.Width

[1,] 8 5.0 3.4 1.5 0.2

[2,] 79 6.0 2.9 4.5 1.5

[3,] 113 6.8 3.0 5.5 2.1

Clustering vector:

[1] 1

[34] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2

[67] 2 2 2 2 2 2 2 2 2 2 2 3 2

[100] 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3

[133] 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2

Objective function:

build swap

0.6709 0.6542

Available components:

[1] "medoids" "id.med" "clustering" "objective" "isolation"

"clusinfo"

[7] "silinfo" "diss" "call" "data"

> plot(pam(iris1, k=3),which.plots=1,labels=3,main="PAM for iris")

Components 1 and 2 together explain 95.81% of the point variability.

10.9 Case studies

10.9.1 Chi square analysis of radioactive decay

In a 2013 blog post1 “The Chemical Statistician” Eric Chan showed how one can
use a chi-squared test in R to examine the hypothesis that the distribution of al-
pha particle decay counts from 241Americium obeys a Poisson distribution. The data
were initially analyzed by Berkson (1966) and were later used by Rice (1995) as
an example in his text. They are available online in tab-separated text format at

1http://chemicalstatistician.wordpress.com/2013/04/14/checking-the-goodness-of-fit-of-the-poisson-
distribution-for-alpha-decay-by-americium-241/#more-612, accessed 2013-08-30

CASE STUDIES 287

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

PAM for iris

Component 1

C
om

po
ne

nt
 2

1

2
3
4

5

6

78

9

10

11

12

13
14

15

16

17

18

19
20

21
22

23
2425

26

27
2829

3031

32

33
34

35
36

3738

39

4041

42

43

44

45

46

47

48

49

50

51
52 53

54

55
56

57

58

59

60

61

62

63

64
65

66

67

68

69
70

71

72
73

74
75
76
77
78

79

80
8182

83 84
85

86
87

88

89

9091

92

93

94

95

969798

99

100

101

102

103

104
105

106

107

108

109

110

111

112

113

114

115

116
117

118

119

120

121

122

123

124

125126

127
128

129

130
131

132

133134
135

136137

138
139

140141142

143

144145

146

147

148

149

150

Figure 10.10: pam (partitioning around medoids) analysis of iris data.

http://www.math.uah.edu/stat/data/Alpha.txt. Chan used this dataset for
his exposition, and our treatment is adapted from his.

We downloaded the dataset and saved it to the Desktop as alpha.txt. We then
read it in as alpha, a data frame.
> alpha = read.table("~/Desktop/alpha.txt", header=TRUE)

The first column is the number of emissions observed in a 10-second interval, from
0 to 19. The second column is the number of intervals in which that number of
emissions was observed.
> (emissions = alpha[,1])

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> (obsCounts = alpha[,2])

[1] 1 4 13 28 56 105 126 146 164 161 123 101 74 53 23 15 9

[18] 3 1 1

The total number of alpha particle decays is the sum of the element-by-element
products (i.e., the dot product) of the emissions vector with the obsCounts vector,
and the total number of 10-second intervals is the sum of obsCounts. The average
number of decays per 10-second interval, λ , is the quotient of these two values.
> (totEmissions = emissions%*%obsCounts)

[,1]

[1,] 10099

> (totIntervals = sum(obsCounts))

[1] 1207

288 ANALYZING DATA

> (lambda = totEmissions/totIntervals)

[,1]

[1,] 8.367026

If the distribution of decays is to be described by a Poisson distribution, the prob-
ability of observing k emissions in a 10-second interval is

f (k) =
λ ke−λ

k!
(10.1)

and the expected number of occurences of k emissions is this probability multiplied
by the total number of intervals.
> k = emissions

> expCounts = totIntervals*lambda^k*exp(-lambda)/factorial(k)

> expCounts = round(expCounts,2)

The chi-squared test for goodness of fit demands an expected count of at least
five in each interval. Therefore, the first three intervals are combined into one, as are
the last three. We can then display the observed (O) and expected (E) counts as a
table.
> O = c(sum(obsCounts[1:3]),obsCounts[4:17],sum(obsCounts[18:20]))

> E = c(sum(expCounts[1:3]),expCounts[4:17],sum(expCounts[18:20]))

> cbind(O,E)

O E

[1,] 18 12.45

[2,] 28 27.39

[3,] 56 57.28

[4,] 105 95.86

[5,] 126 133.67

[6,] 146 159.78

[7,] 164 167.11

[8,] 161 155.36

[9,] 123 129.99

[10,] 101 98.87

[11,] 74 68.94

[12,] 53 44.37

[13,] 23 26.52

[14,] 15 14.79

[15,] 9 7.74

[16,] 5 6.36

The Pearson chi-square test statistic is

χ
2 =

n

∑
k=1

(Ok−Ek)2/Ek. (10.2)

> chisq = sum((O-E)^2/E)

> round(chisq,3)

[1] 8.717

CASE STUDIES 289

The number of degrees of freedom, df, is the number of bins minus the number
of independent parameters fitted (λ) minus 1.
> df = length(O)-2

Then the p.value of the test statistic may be calculated with the pchisq() func-
tion in R, the distribution function for the chi-squared distribution with df degrees
of freedom. The option lower.tail = F specifies that probabilities P/X > x.
> p.value = pchisq(chisq, df, lower.tail = F)

> p.value

[1] 0.8487564

Thus, there is strong evidence that the Poisson distribution is a good fit.

10.9.2 Principal component analysis of quasars

The ninth data release of the Sloan Digital Sky Survey Quasar Catalog
(http://www.sdss3.org/dr9/algorithms/qso catalog.php) contains a file
with 87,822 quasars that have been identified up to 2012. An earlier and smaller
set, with only(!) 46,420 quasars was used in the Summer School in Statis-
tics for Astronomers V, June 1–6, 2009, at the Penn State Center for As-
trostatistics. We shall use that file, named SDSS quasar.dat and located at
http://astrostatistics.psu.edu/su09/lecturenotes/SDSS quasar.dat,
in our example.

We downloaded the file, saved it on the desktop as a text file, and read it into R
with read.table as a data frame:
> quasar = read.table("~/Desktop/SDSS_quasar.dat.txt",head=T)

We check the size of the quasar data frame, get the names of its 23 columns,
and check that there are no missing data.
> dim(quasar)

[1] 46420 23

> names(quasar)

[1] "SDSS_J" "R.A." "Dec." "z" "u_mag" "sig_u" "g_mag"

[8] "sig_g" "r_mag" "sig_r" "i_mag" "sig_i" "z_mag" "sig_z"

[15] "Radio" "X.ray" "J_mag" "sig_J" "H_mag" "sig_H" "K_mag"

[22] "sig_K" "M_i"

> quasar = na.omit(quasar)

> dim(quasar)

[1] 46420 23

The first column, "SDSS J", simply names the object, and the second and third
columns, "R.A." and "Dec.", give its angular position in the sky. The remaining
20 columns code for physical properties, from which we will derive the principal
components. Because these properties are of quite different magnitudes, we use the
scale = TRUE option to normalize each to unit variance. The results of the scaled
calculation are quite different from those of the default, unscaled calculation. After
performing the calculation of pc (prcomp uses singular value decomposition to get
the eigenvalues), summary(pc) gives the importance of the components.

290 ANALYZING DATA

pc

V
ar
ia
nc
es

0
2

4
6

8

Figure 10.11: Screeplot of quasar data.

> pc = prcomp(quasar[,-(1:3)], scale=T)

> summary(pc)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.861 1.821 1.523 1.407 1.0331 0.9768 0.8743

Proportion of Variance 0.409 0.166 0.116 0.099 0.0534 0.0477 0.0382

Cumulative Proportion 0.409 0.575 0.691 0.790 0.8434 0.8911 0.9293

PC8 PC9 PC10 PC11 PC12 PC13

Standard deviation 0.7592 0.447 0.41251 0.36537 0.30197 0.25569

Proportion of Variance 0.0288 0.010 0.00851 0.00667 0.00456 0.00327

Cumulative Proportion 0.9581 0.968 0.97663 0.98331 0.98787 0.99114

PC14 PC15 PC16 PC17 PC18

Standard deviation 0.2408 0.21940 0.19617 0.14188 0.11003

Proportion of Variance 0.0029 0.00241 0.00192 0.00101 0.00061

Cumulative Proportion 0.9940 0.99644 0.99837 0.99938 0.99998

PC19 PC20

Standard deviation 0.01534 0.01212

Proportion of Variance 0.00001 0.00001

Cumulative Proportion 0.99999 1.00000

> screeplot(pc)

The first eight principal components contribute most of the variance. This is made
visually apparent with screeplot, which plots the variances against the number of
the principal component (Figure 10.11).

We learn which properties contribute most to the major principal components by
calling the rotation element of the prcomp list. (princomp calls this the loadings
element.)
> round(pc$rotation[,1:8],2)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

z 0.16 0.17 -0.38 0.37 -0.05 -0.05 0.17 0.28

u_mag 0.23 0.30 -0.25 -0.04 0.08 0.03 0.17 -0.25

CASE STUDIES 291

sig_u 0.12 0.31 -0.23 0.17 0.22 0.18 0.19 -0.63

g_mag 0.27 0.26 -0.12 -0.20 0.02 0.01 -0.07 0.05

sig_g 0.08 0.23 -0.14 0.06 0.33 0.35 -0.77 0.22

r_mag 0.29 0.20 -0.02 -0.28 -0.09 -0.07 0.02 0.18

sig_r 0.05 0.25 0.44 0.32 -0.01 0.00 -0.02 -0.03

i_mag 0.29 0.17 0.01 -0.29 -0.13 -0.09 0.08 0.16

sig_i 0.06 0.26 0.45 0.29 -0.01 -0.01 -0.02 0.01

z_mag 0.29 0.14 0.02 -0.26 -0.15 -0.10 0.09 0.19

sig_z 0.14 0.29 0.40 0.16 -0.07 -0.06 0.08 0.08

Radio -0.03 0.04 -0.01 -0.01 0.58 -0.80 -0.10 -0.02

X.ray -0.11 0.01 0.12 -0.12 0.62 0.39 0.51 0.40

J_mag -0.31 0.23 -0.05 -0.06 -0.03 -0.02 0.01 0.02

sig_J -0.29 0.26 -0.05 -0.11 -0.11 -0.04 0.01 0.05

H_mag -0.31 0.23 -0.05 -0.06 -0.04 -0.02 0.01 0.02

sig_H -0.29 0.25 -0.06 -0.09 -0.11 -0.04 0.01 0.06

K_mag -0.31 0.23 -0.05 -0.06 -0.04 -0.02 0.01 0.02

sig_K -0.29 0.25 -0.07 -0.07 -0.13 -0.06 0.01 0.08

M_i -0.03 0.01 0.34 -0.55 0.12 0.12 -0.11 -0.37

Chapter 11

Fitting models to data

A large part of scientific computation involves using data to determine the parame-
ters in theoretical or empirical model equations. Not surprisingly, given its statistical
roots, R has powerful tools for fitting functions to data. In this chapter we discuss the
most important of these tools: linear and nonlinear least-squares fitting, and poly-
nomial and spline interpolation. We also show how these methods can be used to
accelerate the convergence of slowly convergent series with Padé and Shanks ap-
proximations. We then consider the related topics of time series, Fourier analysis of
periodic data, spectrum analysis, and signal processing, with a focus on extracting
signal from noise.

11.1 Fitting data with linear models

Perhaps the most common data-analysis task in science and engineering is to make
a series of measurements of property y, assumed to be a linear function of x, and to
determine the slope and intercept of y vs. x using least squares. In R, the function that
performs this analysis is lm(), for linear model. Consider, for example, the following
simulated data and analysis, in which the y measurements are afflicted with a small
amount of normally distributed random error.

> x = 0:10

> set.seed(333)

> y = 3*x + 4 + rnorm(n = length(x), mean = 0, sd = 0.3)

We then fit the data to a linear model and call the result.
> yfit = lm(y~x)

> yfit

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

4.029 2.988

The intercept and slope are recovered within a few percent of the original.

293

294 FITTING MODELS TO DATA

0 2 4 6 8 10

5
10

15
20

25
30

x

y

0 2 4 6 8 10

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

x
re
si
du
al
s(
yf
it)

Figure 11.1: Linear fit (left) and residuals (right) for simulated data with random error.

Note that lm() enables one to draw the fitted line with the abline(h,v) func-
tion, in which h and v are taken from the fitted coefficients. The lm() function
also calculates the residuals, convenient for visual inspection of the quality of the
fit (Figure 11.1).
> par(mfrow=c(1,2))

> plot(x,y)

> abline(yfit)

> plot(x,residuals(yfit))

> abline(0,0)

If appropriate, the measurements may be accompanied by a vector of weights, in
which case weighted least squares is used. See ?lm for further details.

11.1.1 Polynomial fitting with lm

Linear models may also be used for polynomial fitting, since y depends linearly on
the polynomial coefficients. Consider, for example, the synthetic data produced by
> set.seed(66)

> x=0:20

> y=1+x/10+x^2/100+rnorm(length(x),0,.5)

where we have added some normally distributed random noise onto a quadratic func-
tion of x. We call for a linear model fit with
> y2fit = lm(y ~ 1 + x + I(x^2))

or equivalently y2fit = lm(y ~ poly(x,2,raw=TRUE)), where the I() in the
formula enforces identity, so that the function remains unchanged. (Note that
y2fit = lm(y ~ poly(x,2) is not equivalent, since \texttt{poly()}

uses orthonormal polynomials).) Then summary() gives the results.

FITTING DATA WITH LINEAR MODELS 295

0 5 10 15 20

1
2

3
4

5
6

7

x

y

Figure 11.2: lm() fit to a quadratic polynomial with random error.

> summary(y2fit)

Call:

lm(formula = y ~ 1 + x + I(x^2))

Residuals:

Min 1Q Median 3Q Max

-0.34951 -0.25683 -0.08032 0.15884 0.80823

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.583913 0.197273 8.029 2.33e-07 ***

x -0.061677 0.045711 -1.349 0.194

I(x^2) 0.017214 0.002207 7.801 3.50e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3305 on 18 degrees of freedom

Multiple R-squared: 0.972,Adjusted R-squared: 0.9688

F-statistic: 311.9 on 2 and 18 DF, p-value: 1.073e-14

The coefficients are of the right order of magnitude, but deviate significantly from
the input (1,.1.,01) because of the large random term. The data and fit are plotted
(Figure 11.2) with
> plot(x,y)

> points(x,predict(y2fit),type="l")

where predict() gives a vector of predicted y values corresponding to the x vector
values.

The same calculation can be done by specifying the degree of the polynomial
with

296 FITTING MODELS TO DATA

ypoly2 = lm(y ~ poly(x,degree=2, raw=TRUE))

where raw = TRUE is required since we don’t want orthogonal polynomials (the
default is raw = FALSE).

11.2 Fitting data with nonlinear models

Fitting to nonlinear models is done in base R with the nls() function, which uses a
Gauss–Newton algorithm. The Gauss–Newton method assumes that the least squares
function is locally quadratic, and finds the minimum of the quadratic. However, this
approach can fail if the starting guess is too far from the true minimum. Therefore, the
more commonly used method in the scientific literature for nonlinear least-squares
minimization is the Levenberg–Marquardt (LM) method. The LM method combines
two minimization methods: gradient descent (steepest descent) and Gauss–Newton.
The gradient descent method reduces the sum of squared deviations by updating the
unknown parameters in the direction of the steepest gradient of the least squares
objective function. The LM method favors the gradient descent method when the
sum of squared deviations is large, and favors the Gauss–Newton approach as the
optimal value is approached.

The Levenberg–Marquardt method is not available in base R (although it prob-
ably should be), but the package minpack.lm provides it. As the description in the
minpack.lm documentation states, the package “provides R interface to lmder and
lmdif from the MINPACK library, for solving nonlinear least-squares problems by
a modification of the Levenberg–Marquardt algorithm, with support for lower and
upper parameter bounds.” The function that is called to do this work in minpack.lm

is nls.lm.
The LM method can be implemented directly with nls.lm, but perhaps more

conveniently with a nls-like call to the nlsLM function that uses nls.lm for fit-
ting. As the help page states, “Since an object of class ‘nls’ is returned, all generic
functions such as anova, coef, confint, deviance, df.residual, fitted, formula, logLik,
predict, print, profile, residuals, summary, update, vcov and weights are applicable.”

We test these nonlinear fitting functions with several datasets from the NIST
StRD Nonlinear Regression Data Sets at http://www.itl.nist.gov/div898/
strd/nls/nls main.shtml. We begin with an exponential model in the lower level
of difficulty category.

As noted at the beginning of this chapter, our first task is to get the data into
R. The data are copied from the web page http://www.itl.nist.gov/div898/

strd/nls/data/LINKS/DATA/Misra1a.dat, with "Data:" cut, pasted into the
file Misra1a.txt in the NIST folder on my desktop, then brought into R with
> misra1a = read.table(file="~/Desktop/NIST/Misra1a.txt",header=T)

> misra1a

y x

1 10.07 77.6

2 14.73 114.9

3 17.94 141.1

4 23.93 190.8

FITTING DATA WITH NONLINEAR MODELS 297

5 29.61 239.9

6 35.18 289.0

7 40.02 332.8

8 44.82 378.4

9 50.76 434.8

10 55.05 477.3

11 61.01 536.8

12 66.40 593.1

13 75.47 689.1

14 81.78 760.0

The result of read.table is a data frame, whose components can be dissected as
follows:
> x=misra1a$x

> y=misra1a$y

A plot of the data looks almost linear, so for fun we first try a linear model:
> lmfit = lm(y~x)

> summary(lmfit)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-2.1063 -0.8814 0.3314 0.9620 1.1703

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.764972 0.661522 5.691 1e-04 ***

x 0.105423 0.001541 68.410 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.2 on 12 degrees of freedom

Multiple R-squared: 0.9974,

Adjusted R-squared: 0.9972 F-statistic: 4680 on 1 and 12 DF,

p-value: < 2.2e-16

The best-fit line shows clearly that y is a slightly nonlinear function of x, as is
evident from the residuals plot.
> par(mfrow=c(1,2))

> plot(x,y)

> abline(lmfit)

> plot(x,residuals(lmfit))

> par(mfrow=c(1,1))

The NIST site tells us that y is in fact an exponential function of x, so we go to a
nonlinear model and begin with the nls function. The usage for nls is
nls(formula, data, start, control, algorithm,

trace, subset, weights, na.action, model,

298 FITTING MODELS TO DATA

100 300 500 700

10
30

50
70

x

y

100 300 500 700

-2
.0

-1
.0

0.
0

1.
0

x

re
si
du
al
s(
lm
fit
)

Figure 11.3: (left) Plot of misra1a data with abline of linear fit; (right) Residuals of linear fit
to misra1a data.

lower, upper, ...)

formula is a nonlinear model formula including variables and parameters. data is
typically a data frame with which to evaluate the variables, but may be omitted if
the variables have already been established. start is a named list or named numeric
vector of starting values for the parameters in the model. The other arguments will
be discussed as needed, or consult the help page for details.

Applying nls to the x,y data from misra1a, we obtain
> nlsfit = nls(y ~ b1*(1-exp(-b2*x)), start=list(b1=500,b2=1e-4))

> summary(nlsfit)

Formula: y ~ b1 * (1 - exp(-b2 * x))

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 2.389e+02 2.707e+00 88.27 <2e-16 ***

b2 5.502e-04 7.267e-06 75.71 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1019 on 12 degrees of freedom

Number of iterations to convergence: 11

Achieved convergence tolerance: 4.14e-06

We plot the (x,y) points again, then draw the predict() line through them (Figure
11.3):
> par(mfrow=c(1,2)) # Anticipate adding residuals plot

> plot(x,y)

> lines(x,predict(nlsfit))

Starting with values much closer to the Certified Values given on the website,
we arrive at the same values for the parameters, but with fewer iterations. In both
cases, the results agree to within the displayed number of significant figures with the
Certified Values on the Misra1a page on the NIST website.

FITTING DATA WITH NONLINEAR MODELS 299

100 300 500 700

10
30

50
70

x

y

100 300 500 700

-0
.1
0

0.
00

0.
10

x

re
si
du
al
s(
nl
sf
it)

Figure 11.4: (left) nls() exponential fit to misra1a data; (right) Residuals of nls() exponential
fit to misra1a data.

> nlsfit2 = nls(y~b1*(1-exp(-b2*x)), start=list(b1=250,b2=5e-4))

> summary(nlsfit2)

Formula: y ~ b1 * (1 - exp(-b2 * x))

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 2.389e+02 2.707e+00 88.27 <2e-16 ***

b2 5.502e-04 7.267e-06 75.71 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1019 on 12 degrees of freedom

Number of iterations to convergence: 3

Achieved convergence tolerance: 5.842e-07

A plot of the residuals shows that the errors, even in the fit to this function, do not
appear quite random, although the probability of flipping a fair coin and finding runs
of 7 heads, 5 tails, and 2 heads is not infinitesimal. Note, however, that the residuals
are an order of magnitude smaller than in the linear fit (Figure 11.4).
> plot(x,residuals(nlsfit))

> abline(0,0)

Applying the nlsLM function to the data (having first loaded minpack.lm), we
use the same function call as for nls and get the same result. The only difference is
that, behind the scenes, the Levenberg–Marquardt method has been used instead of
the Gauss–Newton method.
> require(minpack.lm)

300 FITTING MODELS TO DATA

> nlsLMfit = nls(y~b1*(1-exp(-b2*x)), start=list(b1=500,b2=1e-4))

> summary(nlsLMfit)

Formula: y ~ b1 * (1 - exp(-b2 * x))

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 2.389e+02 2.707e+00 88.27 <2e-16 ***

b2 5.502e-04 7.267e-06 75.71 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1019 on 12 degrees of freedom

Number of iterations to convergence: 11

Achieved convergence tolerance: 4.14e-06

Our third nonlinear minimization method is nls.lm, which is called with the
usage
nls.lm(par, lower=NULL, upper=NULL, fn, jac = NULL, control =

nls.lm.control(), ...)

par is a list or numeric vector of starting estimates for the parameters in the formula.
lower and upper are numeric vectors of lower and upper bounds on each parameter
(set to ± Inf if not given). fn is a function that returns a numeric vector of residuals,
the sum of squares of which is to be minimized. The first argument of fnmust be par.
jac, if given, is a function to return the Jacobian for fn. control is an optional list of
control settings (such as tolerances, maximum number of iterations, whether iterates
are to be printed, etc.), whose names and effects are given in nls.lm.control. As
usual, . . . stands for other arguments to be passed to fn and jac.

Note that nls.lm calls a vector function whose value it seeks to minimize in a
sum of squares sense, while nls and nlsLM call a formula of the form y ~ f(x)

which they attempt to satisfy as closely as possible.
We apply nls.lm to the misra1a dataset, with results identical to those achieved

previously. (Remember that since nlsLM calls nls.lm to do the heavy lifting, this
should not be surprising.)
> install.packages(minpack.lm)

> require(minpack.lm)

> ## model based on a list of parameters

> modFun = function(param, x) param$b1 * (1 - exp(-x*param$b2))

>

> ## residual function is the function to be minimized

> residFun = function(p, observed, x) observed - modFun(p,x)

>

> ## starting values for parameters

FITTING DATA WITH NONLINEAR MODELS 301

> initParams = list(b1 = 500, b2 = 1e-4)

>

> ## perform fit

> nls.lm.out = nls.lm(par=initParams, fn = residFun, observed =

+ y, x = x, control = nls.lm.control(nprint=0))

>

> summary(nls.lm.out)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 2.389e+02 2.707e+00 88.27 <2e-16 ***

b2 5.502e-04 7.267e-06 75.71 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1019 on 12 degrees of freedom

Number of iterations to termination: 15

Reason for termination: Relative error in the sum of squares is

at most ‘ftol’.

It is sometimes of interest to follow the progress of the iterative calculations with
these methods. In nls, this may be done by setting the trace argument to TRUE; the
default is FALSE. In nlsLM and nls.lm, it is accomplished by setting control =

nls.lm.control(nprint=1) where 1 may be any positive number.
A somewhat more challenging problem is a fit to the sum of three rather tightly

spaced decaying exponentials. The data were generated with the function (Lanczos,
1956)

f (x) = 0.0951e−x + 0.8607e−3x + 1.5576e−5x (11.1)

with results to 5 significant figures tabulated on the NIST website. As before, we
copy them to a file, read the file into R, and attempt a nonlinear least squares fit.

> lanczos3 = read.table(file="~/Desktop/NIST/Lanczos3.txt", header=T)

> x = lanczos3$x; y = lanczos3$y

> nls_lan3 = nls(y~b1*exp(-b2*x)+b3*exp(-b4*x)+b5*exp(-

b6*x),start=list(b1=1.2,b2=0.3,b3=5.6,b4=5.5,b5=6.5,b6=7.6))

Error in nls(y ~ b1 * exp(-b2 * x) + b3 * exp(-b4 * x) + b5 * exp(-b6 *:

step factor 0.000488281 reduced below ’minFactor’ of 0.000976562

This time we get an error message, but readily correct the error by adjusting two
of the control options, tol and minFactor (see ?nls for details). Such adjustments
require a trial and error approach.
> nls_lan3 = nls(y~b1*exp(-b2*x)+b3*exp(-b4*x)+b5*exp(-

+ b6*x),start=list(b1=1.2,b2=0.3,b3=5.6,b4=5.5,b5=6.5,b6=7.6),

+ control=list(tol=1e-4, minFactor=1e-6))

> summary(nls_lan3)

Formula: y ~ b1 * exp(-b2 * x) + b3 * exp(-b4 * x) + b5 * exp(-b6 * x)

302 FITTING MODELS TO DATA

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

y

0.0 0.2 0.4 0.6 0.8 1.0

-4
e-
05

0e
+0
0

4e
-0
5

x
re
si
du
al
s(
nl
s_
la
n3
)

Figure 11.5: Fit and residuals of nls() fit to the 3-exponential Lanczos function 11.1.

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 0.08682 0.01720 5.048 8.37e-05 ***

b2 0.95498 0.09704 9.841 1.14e-08 ***

b3 0.84401 0.04149 20.343 7.18e-14 ***

b4 2.95160 0.10766 27.416 3.93e-16 ***

b5 1.58257 0.05837 27.112 4.77e-16 ***

b6 4.98636 0.03444 144.801 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.992e-05 on 18 degrees of freedom

Number of iterations to convergence: 12

Achieved convergence tolerance: 1.95e-05

Plots of data, fit. and residuals now look good, and agreement of fitted with input
parameters is satisfactory (Figure 11.5).

> par(mfrow=c(1,2))

> plot(x,y,pch=16,cex=0.5)

> lines(x,predict(nls_lan3))

> plot(x,residuals(nls_lan3))

> abline(0,0)

Using the Levenberg–Marquardt proceeds as before, most simply with nlsLM,
giving results not dissimilar from those with nls.
> nlsLM_lan3 = nlsLM(y~b1*exp(-b2*x)+b3*exp(-b4*x)+b5*exp(-

+ b6*x),start=list(b1=1.2,b2=0.3,b3=5.6,b4=5.5,b5=6.5,b6=7.6))

Warning message:

In nls.lm(par = start, fn = FCT, jac = jac, control = control,

lower = lower, :

FITTING DATA WITH NONLINEAR MODELS 303

lmdif: info = -1. Number of iterations has reached

‘maxiter’ == 50.

> summary(nlsLM_lan3)

Formula: y ~ b1 * exp(-b2*x) + b3 * exp(-b4*x) + b5 * exp(-b6*x)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 0.10963 0.01939 5.656 2.30e-05 ***

b2 1.06938 0.08704 12.286 3.45e-10 ***

b3 0.90322 0.05645 16.001 4.35e-12 ***

b4 3.09411 0.12182 25.399 1.50e-15 ***

b5 1.50055 0.07550 19.874 1.07e-13 ***

b6 5.03437 0.04458 112.930 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.137e-05 on 18 degrees of freedom

Number of iterations till stop: 50

Achieved convergence tolerance: 1.49e-08

Reason stopped: Number of iterations has reached ‘maxiter’ == 50.

If we increase maxiter to 100, we get convergence after 76 iterations, with
slightly better agreement with the starting variables:
> nlsLM_lan3 = nlsLM(y~b1*exp(-b2*x)+b3*exp(-b4*x)+b5*exp(-

+ b6*x),start=list(b1=1.2,b2=0.3,b3=5.6,b4=5.5,b5=6.5,b6=7.6),

+ control = nls.lm.control(maxiter=100))

>

> summary(nlsLM_lan3)

Formula: y ~ b1 * exp(-b2*x) + b3 * exp(-b4*x) + b5 * exp(-b6*x)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 0.08682 0.01720 5.048 8.36e-05 ***

b2 0.95499 0.09703 9.842 1.14e-08 ***

b3 0.84401 0.04149 20.344 7.17e-14 ***

b4 2.95161 0.10766 27.417 3.92e-16 ***

b5 1.58256 0.05837 27.113 4.77e-16 ***

b6 4.98636 0.03443 144.807 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.992e-05 on 18 degrees of freedom

304 FITTING MODELS TO DATA

Number of iterations to convergence: 76

Achieved convergence tolerance: 1.49e-08

nls.lm would, of course, give the same results, which are not significantly dif-
ferent from those of nls in this case. These estimated values and standard errors of
the parameters agree to within the displayed number of significant figures with the
Certified Values on the Lanczos3.dat page of the NIST website.

The reader is urged to attempt fitting several other samples from the NIST
datasets. The conclusion seems likely to be that, with suitable adjustment of con-
trols, the nls() or nls.lm functions in R are adequate to handle a wide range of
rather difficult nonlinear data fitting problems.

11.3 Inverse modeling of ODEs with the FME package

In Chapter 8 we were concerned with showing how to use R to solve ordinary differ-
ential equations, given initial or boundary conditions and certain parameters (numer-
ical coefficients of rate terms, such as rate constants in chemical kinetics). However,
sometimes we don’t know the parameters, and want to determine them by fitting to
data. This is known as inverse modeling, and can be done in R with the FME package
(http://CRAN.R-project.org/package=FME).

As described in the FME vignette (Soetaert and Petzoldt (2010) J. Stat. Software,
http://www.jstatsoft.org/v33/i03), estimation of parameters for a complex
dynamical system is a nonlinear optimization problem. That is, “the objective is
to find parameter values that minimize a measure of badness of fit, usually a least
squares function or a weighted sum of squared residuals.” The FME package takes
advantage of R’s powerful facilities for nonlinear optimization, and adds some func-
tions of its own.

We illustrate the basics by simulating the kinetic behavior of a simple reversible
chemical reaction

A + B
k f

kr

C. (11.2)

The initial concentrations of the three species are A0, B0, C0, and the amount of A
and B converted to C after the reaction begins is x. The differential equation that
describes the time evolution of x is

dx
dt

= k f (A0− x)(B0− x)− kr(C0 + x). (11.3)

We suppose that C has a characteristic spectral signature which enables its con-
centration to be followed as a function of time. In the laboratory, the measurement of
C would have some uncertainty, or “noise,” associated with it. Our task would be to
determine k f and kr from the time dependence of this noisy signal. We simulate that
process by generating a reaction curve and then adding some random noise to it.

INVERSE MODELING OF ODES WITH THE FME PACKAGE 305

We begin by loading the deSolve package and defining the function rxn(pars)

which numerically solves the differential equation given the parameters specified in
pars, k f and kr, for which we will eventually try to find the best values.
> require(deSolve)

>

> rxn = function(pars) {

+ derivs = function(times, init, pars) {

+ with(as.list(c(pars, init)), {

+ dx = kf*(A0-x)*(B0-x) - kr*(C0+x)

+ list(dx)

+ })

+ }

+ # Initial condition and time sequence

+ init = c(x = 0)

+ times = seq(0, 10, .1)

+

+ # Solve using ode()

+ out = ode(y=init, parms=pars, times=times, func=derivs)

+

+ # Output the result as a data frame with time in column 1,

x in column 2

+ as.data.frame(out)

+ }

We next use the rxn() function with the known rate constants and starting con-
centrations to solve for the value of x as a function of time. We add x to C0 to get C,
which is the quantity measured, and plot the result.
> pars = c(kf = 0.2, kr = 0.3) # Rate constant parameters

> A0 = 2; B0 = 3; C0 = 0.5 # Initial concentrations

> # Solve the equation

> out = rxn(pars = pars)

> # Extract time and concentration variables

> time = out$time

> x = out$x

> # Plot C vs time

> plot(time, x+C0, xlab = "time", ylab = "C", type = "l",

+ ylim = c(0,1.5))

Suppose that the measurement of the concentration of C has an uncertainty of
10% of C0. Therefore, we generate a set of “experimental” points by adding normally
distributed random noise with an amplitude of 0.1C0 to each point, and superimpos-
ing the points on the theoretical plot (Figure 11.6).
> dataC = cbind(time, x = x + 0.1*C0*rnorm(length(C)))

> points(time, dataC[,2] + C0)

Now we invoke FME (which must, of course, already be installed in R) to gain
access to two of its functions: modCost() and modFit().

306 FITTING MODELS TO DATA

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

time

C

Figure 11.6: Concentration of product C of reversible reaction with points reflecting measure-
ment errors.

Given a solution of a model and observed data, modCost estimates the residuals,
and the variable and model costs (sum of squared residuals). The function is called
with
modCost(model, obs, x = "time", y = NULL, err = NULL,

weight = "none", scaleVar = FALSE, cost = NULL, ...)

where the arguments are (see the help page for details):
model model output, as generated by the integration routine or the steady-state

solver, a matrix or a data.frame, with one column per dependent and independent
variable.

obs the observed data, either in long (database) format (name, x, y), a data.frame, or
in wide (crosstable, or matrix) format.

x the name of the independent variable; it should be a name occurring both in the
obs and model data structures.

y either NULL, the name of the column with the dependent variable values,or an in-
dex to the dependent variable values; if NULL then the observations are assumed
to be in crosstable (matrix) format, and the names of the independent variables
are given by the column names of this matrix.

cost if not NULL, the output of a previous call to modCost; in this case, the new
output will combine both.

weight only if err=NULL: how to weigh the residuals, one of “none,” “std,” ‘mean.”
scaleVar if TRUE, then the residuals of one observed variable are scaled respec-

tively to the number of observations.
... additional arguments passed to R-function approx.

In our case, model is the data frame out, and obs is the data frame dataC. x
and y are picked up from the names in the data frames, and the other arguments are
handled as defaults.

INVERSE MODELING OF ODES WITH THE FME PACKAGE 307

> require(FME)

> rxnCost = function(pars) {

+ out = rxn(pars)

+ cost = modCost(model = out, obs = dataC)

+ }

modFit performs constrained fitting of a model to data, in many ways like the
other nonlinear optimization routines we have considered, and is called as follows:
modFit(f, p, ..., lower = -Inf, upper = Inf,

method = c("Marq", "Port", "Newton",

"Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",

"Pseudo"), jac = NULL,

control = list(), hessian = TRUE)

Its arguments are
f a function to be minimized, with first argument the vector of parameters over

which minimization is to take place. It should return either a vector of residuals
(of model versus data) or an element of class modCost (as returned by a call to
modCost).

p initial values for the parameters to be optimized over.
... additional arguments passed to function f (modFit) or passed to the methods.
lower, upper lower and upper bounds on the parameters; if unbounded set equal to
±Inf.

method the method to be used, one of “Marq,” “Port,” “Newton,” “Nelder-Mead,”
“BFGS,” “CG,” “L-BFGS-B,” “SANN,” “Pseudo”—see the help page for details.
Note that the Levenberg–Marquardt method is the default method.

jac a function that calculates the Jacobian; it should be called as jac(x, ...) and return
the matrix with derivatives of the model residuals as a function of the parameters.
Supplying the Jacobian can substantially improve performance; see last example.

hessian TRUE if Hessian is to be estimated. Note that, if set to FALSE, then a sum-
mary cannot be estimated.

control additional control arguments passed to the optimization routine.
Applying modFit to our fitting problem with guesses for the parameters that are

not too far from the real values, and using rxnCost as the function to be minimized,
we obtain
> Fit = modFit(p = c(kf=.5, kr=.5), f = rxnCost)

> summary(Fit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

kf 0.196391 0.007781 25.24 <2e-16 ***

kr 0.293774 0.013954 21.05 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

308 FITTING MODELS TO DATA

Residual standard error: 0.05233 on 99 degrees of freedom

Parameter correlation:

kf kr

kf 1.0000 0.9618

kr 0.9618 1.0000

If the guesses for the parameters are too far from the correct values, an error
message may be returned stating effectively that the calculation did not converge
after the maximum number of iterations, but that “Results are accurate, as far as they
go.” In that case, those results may be used to start a new calculation, or the maximum
number of iterations may be increased.

Proper inverse modeling involves a number of subtleties and complexities be-
yond just nonlinear optimization. The FME vignette uses a relatively simple model of
HIV infection to demonstrate these points. We urge the reader to work through the
vignette, and summarize its contents as follows.
1. The model is formulated as a function containing a set of ODEs with given pa-

rameters, and solved using the deSolve function ode, with output going to a
data frame. The function is initially coded in R (HIV R) but then in Fortran for
speed (HIV), since at later stages the calculation must be repeated thousands of
times. The process for writing code in Fortran, C, or C++ is described in the
vignette “deSolve: Writing Code in Compiled Languages” available at http://
cran.r-project.org/web/packages/deSolve/vignettes/compiledCode.

pdf.
2. The output is compared with the “data,” actually artificial data to which random

noise has been applied. The weighted and scaled residuals are converted into a
cost (HIVcost) using the modCost function of FME.

3. Local sensitivity (sensitivity to the specific parameters in the model) is then cal-
culated using the senFun function of FME which takes as input HIVcost and the
parameters. This process identifies parameters that have little effect on the cost
when they are varied, and parameters that have strongly similar effects, indicat-
ing that they may not be independent. Parameters that are not strongly pairwise
correlated are termed “identifiable,” and are the ones that are important to the
model.

4. Further examination of identifiability comes from multivariate parameter analysis
using the collin function of FME. This yields a set of collinearity indices, indicat-
ing the extent to which a change in one parameter can be undone by appropriate
changes in the other parameters. semFun and collin together enable selection of
the set of parameters with the smallest collinearities for subsequent fitting.

5. To find the “best” values of the remaining parameters, nonlinear data fitting is car-
ried out with the modFit function of FME. This is a wrapper for the optimization
functions in optim, nls, and nlminb from the R base packages, with the addi-
tion of the Levenberg–Marquardt algorithm from the minpack.lm package and a
pseudo-random search algorithm implemented in FME.

IMPROVING THE CONVERGENCE OF SERIES: PADÉ AND SHANKS 309

6. The steps up to this point have provided values for the identifiable parameters that
are optimal in the least squares sense. However, it is important to estimate the
effect of uncertainties in the parameters on the fit between the model and the data.
This is done with the modMCMC function in FME, using a Markov chain Monte Carlo
method with probabilities drawn from the target distribution, as described in the
vignette. It is at this stage that the large number of runs of the model are carried
out, making desirable coding of the HIV function in a fast, low-level language.

7. The function sensRange of FME is then used to generate graphs and summary
data on the effect of parameter uncertainty on the output of the model.

8. An extension of this approach to global parameter sensitivity is made by the func-
tion modCRL which tests the effect of parameter variation on a single output vari-
able (such as mean viral load), rather than on a time series.

FME is applicable not just to simulations of dynamic processes, but also
to steady states (vignette “FMEsteady”) and nonlinear equilibrium models (vi-
gnette “FMEother”). The vignettes “FMEdyna” and “FMEmcmc” demonstrate ad-
ditional aspects of the FME package. All of these vignettes are available at
http://CRAN.R-project.org/package=FME.

11.4 Improving the convergence of series: Padé and Shanks

A task related to that of fitting a function to a set of points is finding an approximation
to the function that is better than the first few terms of a Taylor’s series. We demon-
strate two approaches here, both using rational functions (ratios of polynomials).

We begin with Padé approximants, which use the “data” provided by the first few
terms in a Taylor’s series to construct the best approximation of the desired function
by a rational function of given order. The Padé approximant often gives a better
approximation of the desired function than the Taylor’s series, and may work even if
the power series does not converge. For an example, consider the function ln(1 + x)
whose Taylor’s series expansion to 4th order is x− x2/2 + x3/3− x4/4.

Calculation of Padé approximants in R is carried out in the pracma package,
which must be installed before it can be loaded and used.

> require(pracma)

Loading required package: pracma

PRACMA 1.1.6:

Renamed some functions to avoid shadowing R base functions.

The pade function takes as arguments the vector of coefficients of the series in
descending order, and the desired degrees of the numerator and denominator polyno-
mials. In this case we use second-order polynomials.
> P = pade(c(-1/4,1/3,-1/2,1,0),d1=2,d2=2)

> r1 = P$r1; r2 = P$r2

We now define functions for the original, series, and Padé results, and plot them for
comparison (Figure 11.7). The improvement in accuracy of the Padé result over an
extended range is striking.

310 FITTING MODELS TO DATA

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

lo
g(

1
+

x)

Figure 11.7: Approximations of ln(1+x): Solid line, true function; dashed line, Taylor’s series;
points, Padé approximation.

> origfn = function(x) log(1+x)

> taylorfn = function(x) x-x^2/2+x^3/3-x^4/4

> padefn = function(x) polyval(r1,x)/polyval(r2,x)

>

> curve(log(1+x),0,2)

> curve(taylorfn, add=T,lty=2)

> x=seq(0,2,.5)

> points(x,padefn(x),pch=16)

The Shanks transformation is used to accelerate the convergence of a slowly con-
vergent series. In many common cases, the true value of the series, S, can be repre-
sented as the nth partial sum plus an “error” term decreasing geometrically with n:
S = S +Cλ n . Manipulation of this equation shows that

S = Sn+1 +
λ

1−λ
(Sn+1−Sn)

where
λ =

Sn+1−Sn

Sn−Sn−1

Consider the application of this approach to the Riemann zeta function ζ (2):

ζ (2) =
∞

∑
x=1

1
x2 =

π2

6

where the last equality was proved by Euler. It takes 60 terms of the series for the
cumulative sum to come within 1% of the correct answer (Figure 11.8).
> x = 1:60

> y = 1/x^2

> csy=cumsum(y)

> plot(x,csy,type="l", ylim=c(1,1.8))

> abline(h=pi^2/6, lty=3)

INTERPOLATION 311

0 10 20 30 40 50 60

1.
0

1.
2

1.
4

1.
6

1.
8

x

cs
y

Figure 11.8: Approximation to ζ (2) by direct summation of 1/x2.

The R program below, which applies the Shanks transformation three times in
succession, comes within 1.6% using only the first seven terms of the series, while
direct summation takes 37 terms to get that close.
> S = function(w,n) {

+ lam = (w[n+1]-w[n])/(w[n]-w[n-1])

+ return(w[n+1]+lam/(1-lam)*(w[n+1]-w[n]))

+ }

> # Use terms (1,2,3) to get S(csy,2), ...

> # (5,6,7) to get S(csy,6)

> S1 = c(S(csy,2),S(csy,3),S(csy,4),S(csy,5),S(csy,6))

> S1

[1] 1.450000 1.503968 1.534722 1.554520 1.568312

> # Now use the previous five values to get three new values

> S2 = c(S(S1,2),S(S1,3),S(S1,4))

> S2

[1] 1.575465 1.590296 1.599981

> # Use those three values to get one new value

> S3 = S(S2,2);

> S3

[1] 1.618209

> pi^2/6

[1] 1.644934

11.5 Interpolation

Often one has tabulated values of a property as a function of some condition, but
wants the value at some other conditions than those tabulated. If the desired con-
dition lies within the tabulated range, the value can be estimated by interpolation.
(Extrapolating beyond the tabulated range is a much riskier business.) R has several
functions for doing such interpolation.

312 FITTING MODELS TO DATA

0 5 10 15

2.
5

3.
0

3.
5

tC

vi
sc

Figure 11.9: Viscosity of 20% solutions of sucrose in water as a function of temperature.

For example, biochemists often sediment proteins and nucleic acids through
aqueous sucrose solutions. Tables of the viscosity of such solutions are available
at 5 deg C temperature increments (0, 5, 10, 15, etc.). But suppose sedimentation
measurements are to be done at other temperatures, e.g., 4, 7, and 12 deg C. See
Figure 11.9.

> # Known values

> tC = c(0,5,10,15)

> visc = c(3.774, 3.135, 2.642, 2.255)

> plot(tC,visc, type="o")

11.5.1 Linear interpolation

The simplest interpolation, but generally not the most appropriate, is a linear extrap-
olation between neighboring tabulated points bounding the temperature of interest.
This is handled in R by the approx() or approxfun() functions.
> # Desired temperatures

> tExp = c(4,7,12)

> # Linear approximation

> approx(tC,visc,tExp)

$x

[1] 4 7 12

$y

[1] 3.2628 2.9378 2.4872

> # Linear approximation using approxfun

> apf = approxfun(tC,visc)

> apf(tExp)

[1] 3.2628 2.9378 2.4872

INTERPOLATION 313

11.5.2 Polynomial interpolation

Given the small but noticeable curvature in the tC-visc plot, a polynomial plot might
be slightly more accurate. poly.calc computes the Lagrange interpolating polyno-
mial, from which the values at the desired conditions can be obtained.
> require(PolynomF)

Loading required package: PolynomF

> polyf = poly.calc(tC, visc)

> polyf(tExp)

[1] 3.24984 2.92252 2.47672

A variant of the Lagrange interpolation procedure is Barycentric Lagrange inter-
polation, implemented in the pracma package, which states “Barycentric interpola-
tion is preferred because of its numerical stability.”
> require(pracma)

> barylag(tC,visc,tExp)

[1] 3.24984 2.92252 2.47672

11.5.3 Spline interpolation

For this only mildly curved dataset, identical results are obtained with cubic spline
interpolation, using either spline() or the perhaps preferable splinefun(), which
gives the function over the full range of inputs.
> spline(tC,visc,xout=tExp)

$x

[1] 4 712

$y

[1] 3.24984 2.92252 2.47672

> spf = splinefun(tC, visc)

> spf(tExp)

[1] 3.24984 2.92252 2.47672

Polynomial interpolation functions may often oscillate substantially and inap-
propriately. Spline functions are generally better behaved, but even they may exhibit
inappropriate non-monotonic behavior. In such circumstances, splinefun has the
method "monoH.FC", which guarantees that the spline will be monotonic increasing
or decreasing if the data points are. This behavior is demonstrated in the following
example (Figure 11.10).
> options(digits=4)

> x=c(0,.5,1,2,3,4)

> y=c(0,.93,1,1.1,1.15,1.2)

> require(PolynomF)

> polyfit = poly.calc(x,y)

> polyfit

3.638*x - 4.794*x^2 + 2.828*x^3 - 0.7438*x^4 + 0.07105*x^5

> plot(x,y) # Plot of points

314 FITTING MODELS TO DATA

0 1 2 3 4

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2

x

y
polynom
spline
spline.mono

Figure 11.10: Examples of non-monotonic and monotonic fitting to a set of points.

> curve(polyfit,add=T,lty=3) # Polynomial curve fit

> splinefit=splinefun(x,y)

> curve(splinefit,add=T,lty=2) # Spline fit

> splinefit.mono = splinefun(x,y,method="mono")

> curve(splinefit.mono,add=T,lty=1) # Monotonic spline fit

> legend("bottomright",legend=c("polynom","spline",

+ "spline.mono"), lty=c(3:1),bty="n")

11.5.3.1 Integration and differentiation with splines

integrate() (see Chapter 6) can be combined with spline fitting to find the area
under a set of points, using splinefun(). (To get the coordinates of the spline fit
points themselves, rather than the function that determines them, use spline().)
For example, suppose that one simulates the UV spectrum of a mixture of three
compounds, each of which is characterized by a Gaussian band shape with maximum
at x0 and standard deviation sig, with the amplitude being measured every 5 nm
between 180 nm and 400 nm.
> fn = function(x,x0,sig) exp(-(x-x0)^2/(2*sig^2))

> x = seq(180,400,4)

> y = 1*fn(x,220,15) + 1.3*fn(x,280,12) + .8*fn(x,320,15)

> fsp = splinefun(x,y)

> integrate(fsp,180,400)

106.6383 with absolute error < 0.011

> plot(x,y,pch=16, cex=0.5, ylim=c(-1,1.4))

> curve(fsp(x), add = T)

One can also use the spline function to numerically differentiate the data. This can
be useful to emphasize maxima and minima in the data: they turn into zero crossings
when differentiated once.
> curve(10*fsp(x,deriv=1), add=T, lty="dashed")

INTERPOLATION 315

200 250 300 350 400

-1
.0

0.
0

0.
5

1.
0

x

y

Figure 11.11: Fit of a spline function to a simulated spectrum, along with first and second
derivative curves.

Second and higher order derivatives can also be calculated (Figure 11.11).
> curve(10*fsp(x, deriv=2),add=T, lty="dotted")

> abline(0,0)

11.5.4 Rational interpolation

Rational interpolation, implemented in pracma, is less commonly employed than
polynomial or spline methods, but it may be the most reliable, especially for func-
tions with poles (see Press et al. (2007), p. 124). The procedure, giving a function
that is the ratio of two polynomials, is essentially the same as for calculating Padé
approximants.
> require(pracma)

> ratinterp(tC,visc,tExp)

[1] 3.249560 2.922859 2.476251

Polynomial and spline interpolating functions will often diverge or oscillate
markedly if applied outside the range for which they were calculated. Therefore, they
are generally very unreliable for extrapolation. Rational approximation, on the other
hand, can often be used for extrapolation of real-life data. Consider, for example,
extrapolation of the aqueous sucrose data to 20 deg C.
> ratinterp(tC,visc,20) # rational interpolation

[1] 1.946371

> polyf(20) # polynomial fit

[1] 1.934

> spf(20) # spline fit

[1] 1.934

1.946 is the tabulated experimental value.

316 FITTING MODELS TO DATA

0 10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0 Sampled Sine Function

time

si
n(

2
*

pi
 *

 fr
eq

 *
 x

 +
 p

hi
)

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

-1
0

0
10

20

Fourier Components

freq
R
e(
y)
,Im
(y
)

Re
Im

Figure 11.12: Sampling and analysis of a sine signal.

11.6 Time series, spectrum analysis, and signal processing

Scientists and engineers often need to make sense out of a series of data points mea-
sured at successive times, a topic collectively denoted as “time series.” Often the
signal oscillates in time, but the data are complicated by non-constant baselines and
random noise. A common task is to determine the frequency or frequencies of the
underlying signal. The basic tools in R to accomplish this task are Fourier analysis,
carried out with the fft() (fast Fourier transform) function, and power spectrum
analysis, carried out with the spectrum() function. We also consider the signal

package, which gives access to a broader range of signal processing and filtering
functions.

11.6.1 Fast Fourier transform: fft() function

We begin with a simple sine wave, with frequency freq, amplitude A, phase phi,
sampled N times at interval tau. See Figure 11.12.
> # Parameters

> N = 50; freq = 1/5; A = 1; phi = pi/6; tau = 1

> par(mfrow=c(1,2)) # To display various features side-by-side

> # Draw the smooth underlying sine wave

> curve(sin(2*pi*freq*x + phi),0,N-1, xlab="time",

+ main="Sampled Sine Function")

> # Plot the points at which sampling will occur

> j=0:(N-1)

> y = sin(2*pi*freq*j*tau + phi)

> points(j,y,pch=16,cex=0.7)

> # Calculate the real and imaginary parts of the fft

> ry = Re(fft(y)); iy = Im(fft(y))

> # Set the infinitesimal components to zero

TIME SERIES, SPECTRUM ANALYSIS, AND SIGNAL PROCESSING 317

0 10 20 30 40 50

-1
00

0
10
0

20
0

30
0

40
0

j

R
e(
yi
fft
)

Figure 11.13: Inverse fft of the signal in Figure 11.17.

> zry = zapsmall(ry)

> ziy = zapsmall(iy)

> # Plot the real part(s)

> plot(j/(tau*N),zry,type="h",ylim=c(min(c(zry,ziy)),

+ max(c(zry,ziy))),xlab = "freq",

+ ylab ="Re(y),Im(y)", main="Fourier Components")

> # Add the imaginary part(s)

> points(j/(tau*N),ziy,type="h",lty=2)

> legend("top",legend=c("Re","Im"),lty=1:2, bty="n")

The frequency axis is in units of 1/(jτ) with the lowest frequency being 1/(Nτ) and
the highest meaningful frequency being 1/(2τ), or 0.5 on this graph. The Fourier
Components plot recovers the input frequency of 0.2; the apparent second peak at 0.8
is the result of “aliasing” as explained by the Nyquist–Shannon sampling theorem.
Since the phase is π/6, both real and imaginary components of the Fourier transform
are found. If the phase were 0, only the imaginary component would appear; if the
phase were π/2, only the real component would appear. In both of these “pure” cases,
the amplitude is 25 = N/2; a very different normalization from that typically defined
in mathematics textbooks.

11.6.2 Inverse Fourier transform

The inverse Fourier transform can be obtained with the option inverse = TRUE of
the fft() function:
> yfft = fft(y)

> yifft = fft(yfft,inverse=TRUE)

> plot(j,Re(yifft), type="l")

The shape of the curve (Figure 11.13) is the same as the original function, but the
normalization is different. According to the fft help page, “If inverse is TRUE, the

318 FITTING MODELS TO DATA

0.1 0.2 0.3 0.4 0.5

1e
-0
8

1e
-0
4

1e
+0
0

frequency

po
w
er

Logarithmic
Power Spectrum of Sine Function

0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
12

Linear

sp$freq
sp
$s
pe
c

Figure 11.14: Power spectrum of sine function.

(unnormalized) inverse Fourier transform is returned, i.e., if y =- fft(z), then z is fft(y,
inverse = TRUE) / length(y).”

11.6.3 Power spectrum: spectrum() function

Often the main quantity desired is the frequency, in which case the spectrum()
function is appropriate, since it gives the sum of the squares of the real and imagi-
nary components as a function of frequency, i.e., the power spectrum, in which the
amplitude is plotted on a logarithmic scale. In general, only the largest values are of
interest. spectrum(y) returns a list, from which the frequency and power compo-
nents can be obtained with $freq and $spec, which enables a linear plot of power
vs. frequency (Figure 11.14).
> # Set up for plotting two graphs with combined caption

> par(oma=c(0,0,2,0))

> par(mar=c(3,3,2,1))

> par(mfrow=c(1,2))

> # Calculate the power spectrum

> sp = spectrum(y, xlab="frequency", ylab="power",main="Logarithmic")

> grid() # To more easily read off the coordinates of the peak(s)

> # Place the combined caption

> mtext("Power Spectrum of Sine Function", side=3,line=2, adj=-2)

> # Plot the linearized power spectrum

> plot(sp$freq,sp$spec,type="h", main="Linear")

The spectrum help page states “The spectrum here is defined with scaling 1/fre-
quency(x), following S-PLUS. This makes the spectral density a density over the
range (-frequency(x)/ 2, +frequency(x)/2), whereas a more common scaling is 2pi
and range (-0.5, 0.5] ... or 1 and range (-pi, pi].”

TIME SERIES, SPECTRUM ANALYSIS, AND SIGNAL PROCESSING 319

0 10 20 30 40 50

-3
-2

-1
0

1
2

3
Two Sine Functions

timeA
1

*
si

n(
2

*
pi

 *
 f1

 *
 x

) +
 A

2
*

si
n(

2
*

pi
 *

 f2
 *

 x
)

0.0 0.2 0.4 0.6 0.8 1.0

-3
0

-1
0

0
10

20

Fourier Components

freq
R
e(
y)
,Im
(y
)

Figure 11.15: fft of the sum of two sine functions.

If we apply the same analysis to the sum of two sine functions, with different
frequencies and amplitudes, we recover the original frequencies with approximately
proportionate amplitudes with spectrum(). The fft() results, however, are not
easy to interpret by inspection (Figure 11.15).
> par(mfrow=c(1,2))

>

> N = 50; tau = 1

> f1 = 1/5; A1 = 1; f2 =1/3; A2 = 2

> curve(A1*sin(2*pi*f1*x) + A2*sin(2*pi*f2*x),0,N-1,

+ xlab="time", main="Two Sine Functions")

>

> j=0:(N-1)

> y = A1*sin(2*pi*f1*j*tau) + A2*sin(2*pi*f2*j*tau)

>

> ry = Re(fft(y)); iy = Im(fft(y))

> zry = zapsmall(ry)

> ziy = zapsmall(iy)

>

> plot(j/(tau*N),zry,type="h",ylim=c(min(c(zry,ziy)),

+ max(c(zry,ziy))),xlab = "freq",

+ ylab ="Re(y),Im(y)", main="Fourier Components")

> points(j/(tau*N),ziy,type="h",lty=2)

The power spectrum (Figure 11.16) is computed and plotted from
> par(mfrow = c(1,1))

> sp = spectrum(y, xlab="frequency", ylab="power",

+ main="Power Spectrum 2 Sines")

> grid()

320 FITTING MODELS TO DATA

0.1 0.2 0.3 0.4 0.51e
-0
7

1e
-0
3

1e
+0
1

frequency

po
w
er

Power Spectrum 2 Sines

bandwidth = 0.00577

Figure 11.16: Power spectrum of the sum of two sine functions.

A more realistic case would be a signal consisting of two sine functions with a
sloping baseline and a significant amount of random noise (Figure 11.17).
> par(mfrow=c(1,2))

> set.seed(123)

> N = 50; tau = 1

> f1 = 1/5; A1 = 1; f2 =1/3; A2 = 2

> j=0:(N-1)

> y = A1*sin(2*pi*f1*j*tau) + A2*sin(2*pi*f2*j*tau)

0 10 20 30 40 50

-2
0

2
4

6
8

j

y

0.1 0.2 0.3 0.4 0.5

0.
1

0.
5

2.
0

5.
0

20
.0

frequency

sp
ec
tru
m

Series: x
Raw Periodogram

bandwidth = 0.00577

Figure 11.17: Power spectrum (right) of the sum of two sine functions with random noise and
a sloping baseline (left).

TIME SERIES, SPECTRUM ANALYSIS, AND SIGNAL PROCESSING 321

0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

spf

sp
s

Figure 11.18: Plot of the peaks derived from the power spectrum.

> ybase = j/10 # Add a linear sloping baseline

> yrand = rnorm(N) # and some random noise

> y = y + ybase + yrand # Combine

> plot(j,y,type="l")

> sp = spectrum(y); grid()

Handily, spectrum() removes linear trends. Even with a large amount of noise,
the two peaks at frequencies of 1/5 and 1/3 stand out. If the slope and intercept of the
linear baseline were desired, they could be obtained from the linear fit lm(y∼j).

11.6.4 findpeaks() function

We can obtain a more precise description of the peaks in the power spectrum by
using the findpeaks() function of the pracma package on the plot of the $spec vs
$freq components of the sp list. (See Figure 11.18.) According to the findpeaks

help page, the function “returns a matrix where each row represents one peak found.
The first column gives the height, the second the position/index where the maximum
is reached, the third and fourth the indices of where the peak begins and ends — in
the sense of where the pattern starts and ends.”
> spf = sp$freq

> sps = sp$spec

> plot(spf,sps,type="l")

> require(pracma)

> findpeaks(sps,minpeakheight=5)

[,1] [,2] [,3] [,4]

[1,] 9.850003 10 6 11

[2,] 24.226248 17 13 19

> spf[c(10,17)]

[1] 0.20 0.34

322 FITTING MODELS TO DATA

Thus the 10th and 17th frequency values in the spectrum are 0.20 and 0.34, very
close to the starting values of 1/5 and 1/3 for the pure sum of sine waves, although
the heights are not in the proper ratios. If the number of sampled points had been
an integral multiple of both starting frequencies (e.g., 60 rather than 50) the analysis
would have yielded 0.33 for the second frequency.

11.6.5 Signal package

According to its documentation, the signal package is “a set of signal processing R
functions originally written for MATLAB R©/Octave. Includes filter generation util-
ities, filtering functions, resampling routines, and visualization of filter models. It
also includes interpolation functions.” We confine our discussion to showing how
several of the filter models can be used to approximate the underlying signal in a
noisy signal.
> require(signal)

Loading required package: signal

Loading required package: MASS

Attaching package: signal

The following object(s) are masked from package:pracma:

conv, ifft, interp1, pchip, polyval, roots

The following object(s) are masked from package:stats:

filter, poly

11.6.5.1 Butterworth filter

The Butterworth filter is a filter designed to have as flat a frequency response as
possible in the pass band. Its characteristics are plotted using the freqz function. By
default it is implemented in signal as a low-pass filter, but it may also be high-pass,
stop-band, or pass-band. Figure 11.19 shows an example.
> bf = butter(4, 0.1) # parameters filter order, critical frequency

> freqz(bf)

We use a Butterworth filter to extract a sinusoidal signal from added normally
distributed random noise. Note that the pure one-pass filter introduces a phase shift,
but the signal function filtfilt does a reverse pass and removes the phase shift,
albeit at the expense of squaring the magnitude response (Figure 11.20).
> bf = butter(3, 0.1) # 10 Hz low-pass filter

> t = seq(0, 1, len = 100) # 1 second sample

> # 2.3 Hz sinusoid + noise

> x = sin(2*pi*t*2.3) + 0.25*rnorm(length(t))

> y = filtfilt(bf, x)

TIME SERIES, SPECTRUM ANALYSIS, AND SIGNAL PROCESSING 323

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3
.0

-0
.5

Pass band (dB)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2
50

-5
0

Stop band (dB)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3
50

-5
0

Frequency

Phase (degrees)

Figure 11.19: Frequency response of the Butterworth filter butter(4,0.1).

> z = filter(bf, x) # apply filter

> plot(t, x,type="l", lty=3, lwd = 1.5)

> lines(t, y, lty=1, lwd=1.5)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

t

x

data
filtfilt
filter

Figure 11.20: Use of butter(3,0.1) filter to extract a sinusoidal signal from added nor-
mally distributed random noise.

324 FITTING MODELS TO DATA

> lines(t, z, lty=2, lwd = 1.5)

> legend("bottomleft", legend = c("data", "filtfilt", "filter"),

+ lty=c(3,1,2), lwd=rep(1.5,3), bty = "n")

11.6.5.2 Savitzky–Golay filter

The Savitzky–Golay method performs a local polynomial fit on a set of points to de-
termine the smoothed value for each point. It has the advantage “that it tends to pre-
serve features of the distribution such as relative maxima, minima and width, which
are usually ‘flattened’ by other adjacent averaging techniques (like moving averages,
for example)” (Wikipedia). On the other hand, as we see from this example, it may
preserve some details that were not present in the original signal (Figure 11.21).
> y = sgolayfilt(x)

> plot(t,x,type="l",lty=3)

> lines(t, y)

> legend("bottomleft", legend = c("data", "sgolayfilt"),

+ lty=c(3,1), bty = "n")

11.6.5.3 fft filter

The fftfilt function applies a multi-point running average filter to the data.
> z = fftfilt(rep(1, 10)/10, x) # 10-point averaging filter

> plot(t, x, type = "l", lty=3)

> lines(t, z)

> legend("bottomleft", legend = c("data", "fftfilt"),

+ lty=c(3,1), bty = "n")

R and its contributed packages contain many functions for analyzing time series. For
more detailed and extensive views of this broad topic, see the book by Cryer and

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

t

x

data
sgolayfilt

Figure 11.21: Use of Savitzky–Golay filter to extract a sinusoidal signal from added normally
distributed random noise.

CASE STUDIES 325

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x

data
fftfilt

Figure 11.22: Use of fftfilt to extract a sinusoidal signal from added normally distributed
random noise.

Chan (2008); Chapter 14 in Venables and Ripley (2002); and the Time Series Analy-
sis Task View on CRAN.1 Shorter but useful online treatments have been written by
Coghlan2 and Kabacoff,3 among others.

11.7 Case studies

11.7.1 Fitting a rational function to data

The NIST Dataset Archives at http://www.itl.nist.gov/div898/strd/

general/dataarchive.html contains many interesting datasets on which statisti-
cal code may be exercised. In the Nonlinear Regression subset at http://www.itl.
nist.gov/div898/strd/nls/nls main.shtml there are sets at three levels of
difficulty: Lower, Average, and Higher. We have already used Misra1a and
Lanczos3 from the Lower set. Here we use Hahn1 at http://www.itl.nist.gov/
div898/strd/nls/data/hahn1.shtml for a dataset at an Average level of diffi-
culty. The data are the result of a NIST study involving the thermal expansion of
copper; x is the Kelvin temperature and y is the coefficient of thermal expansion.
There are 236 observations, and we fit to a rational function with 7 coefficients,

y =
b1 + b2x + b3x2 + b4x3

1 + b5x + b6x2 + b7x3 , (11.4)

so there are 229 degrees of freedom.
We begin, as usual, by copying the data from the website, saving it to a file on

the desktop, and reading it into R with read.table().
> hahn1 = read.table(file="~/Desktop/Hahn1.txt", header=T)

1http://cran.r-project.org/web/views/TimeSeries.html
2http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/
3http://www.statmethods.net/advstats/timeseries.html

326 FITTING MODELS TO DATA

0 200 400 600 800

0
5

10
15

20

x

y

0 200 400 600 800

-0
.2

-0
.1

0.
0

0.
1

0.
2

x

re
si
d(
nl
sL
M
_H
ah
n1
)

Figure 11.23: (left) Plot of Hahn1 data and fitting function; (right) Plot of residuals.

We extract the x and y variables, and plot the data to get a sense of its behavior.
Anticipating the need to overlay the fitting function and plot the residuals, we set up
a 1×2 graphics array (Figure 11.23).
> x = hahn1$x; y = hahn1$y

> par(mfrow=c(1,2))

> plot(x,y,cex=0.5)

We use the Levenberg–Marquardt approach to find the estimated best values for the
coefficients in the rational function with the nlsLM() function in the minpack.lm

package. As starting values we use those on the NIST website.
> require(minpack.lm)

> nlsLM_Hahn1 = nlsLM(y~(b1+b2*x+b3*x^2+b4*x^3)/

(1+b5*x+b6*x^2+b7*x^3),

start=list(b1=10, b2=-1, b3=.05, b4=-1e-5,

b5=-5e-2, b6=.001, b7=-1e-6))

We get the estimated values, their standard errors, and the probabilities that they
are not significant (infinitesimal in all cases) with the summary() function.
> summary(nlsLM_Hahn1)

Formula: y ~ (b1 + b2 * x + b3 * x^2 + b4 * x^3)/

(1 + b5 * x + b6 * x^2 + b7 * x^3)

Parameters:

Estimate Std. Error t value Pr(>|t|)

b1 1.078e+00 1.707e-01 6.313 1.40e-09 ***

b2 -1.227e-01 1.200e-02 -10.224 < 2e-16 ***

b3 4.086e-03 2.251e-04 18.155 < 2e-16 ***

b4 -1.426e-06 2.758e-07 -5.172 5.06e-07 ***

b5 -5.761e-03 2.471e-04 -23.312 < 2e-16 ***

CASE STUDIES 327

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Figure 11.24: Atmospheric concentration of CO2 monthly from 1959 to 1997.

b6 2.405e-04 1.045e-05 23.019 < 2e-16 ***

b7 -1.231e-07 1.303e-08 -9.453 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0818 on 229 degrees of freedom

Number of iterations to convergence: 10

Achieved convergence tolerance: 1.49e-08

These values agree, to the displayed number of significant figures, with those on the
NIST website. Interestingly, using starting values 10-fold lower leads to identical
results.

Finally, we graphically examine the agreement between experimental and fitted
values with an overlay line and a plot of residuals. Examination of the numerical
data shows that the x values are not monotonically increasing, so we first sort x and
y before we draw the fitted line.
> xsort=sort(x)

> ysort=sort(fitted(nlsLM_Hahn1))

> lines(xsort,ysort)

> plot(x,resid(nlsLM_Hahn1),cex=0.5)

11.7.2 Rise of atmospheric carbon dioxide

The datasets package included in base R contains the time series co2, which
presents 468 monthly measurements of the atmospheric concentration of CO2 on
Mauna Loa, expressed in parts per million, from 1959 to 1997. The data can be vi-
sualized simply (Figure 11.24):
> plot(co2)

There is a clear upward trend, along with fairly regular seasonal oscillations and
some random variation. The decompose() function separates these contributions by
moving averages (Figure 11.25).

328 FITTING MODELS TO DATA

32
0

34
0

36
0

ob
se
rv
ed

32
0

34
0

36
0

tre
nd

-3
-1

0
1

2
3

se
as
on
al

-0
.5

0.
0

0.
5

1960 1970 1980 1990

ra
nd
om

Time

Decomposition of additive time series

Figure 11.25: Decomposition of CO2 data into trend, seasonal, and random components.

> dco2 = decompose(co2)

> plot(dco2)

Since the seasonal oscillations are fairly constant over time, the use of the de-
fault "additive" type is appropriate. In some other examples of time series, the
amplitudes of the seasonal oscillations tend to increase or decrease. This situation is
handled with the "multiplicative" option.

Bibliography

[Act90] Forman S. Acton. Numerical Methods that Work. Mathematical Associ-
ation of America, Washington, D.C., 1990.

[Adl10] Joseph Adler. R in a Nutshell. O’Reilly, Sebastopol, CA, 2010.
[AS65] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical

Functions. Dover, New York, 1965.
[Ber66] J. Berkson. Examination of randomness in alpha particle emissions. In

F.N. David, editor, Research Methods in Statistics. Wiley, New York,
1966.

[BHS99] Bernd Blasius, Amit Huppert, and Lewi Stone. Complex dynamics and
phase synchronization in spatially extended ecological systems. Nature,
399:354–359, 1999.

[Blo09] Victor Bloomfield. Computer Simulation and Data Analysis in Molecular
Biology and Biophysics: An Introduction Using R. Springer, New York,
2009.

[BS00] Bernd Blasius and Lewi Stone. Chaos and phase synchronization in eco-
logical systems. International Journal of Bifurcation & Chaos in Applied
Sciences & Engineering, 10:2361–2380, 2000.

[BWR80] Victor A. Bloomfield, Robert W. Wilson, and Donald C. Rau. Poly-
electrolyte effects in dna condensation by polyamines. Biophys. Chem.,
11:339–343, 1980.

[CC08] Jonathan D. Cryer and Kung-Sik Chan. Time Series Analysis with Appli-
cations in R. Springer, New York, second edition, 2008.

[Cha87] David Chandler. Introduction to Modern Statistical Mechanics. Oxford
University Press, New York, 1987.

[Dal08] Peter Dalgaard. Introductory Statistics with R. Springer, New York, sec-
ond edition, 2008.

[Gar00] Alejandro L. Garcia. Numerical Methods for Physics. Prentice-Hall,
Upper Saddle River, New Jersey, second edition, 2000.

[HH00] Desmond J. Higham and Nicholas J. Higham. Matlab Guide. SIAM,
Philadelphia, 2000.

[HS95] Owen T. Hanna and Orville C. Sandall. Computational Methods in
Chemical Engineering. Prentice-Hall PTR, Upper Saddle River, New
Jersey, 1995.

329

330 BIBLIOGRAPHY

[JMR09] Owen Jones, Robert Maillardet, and Andrew Robinson. Introduction to
Scientific Programming and Simulation Using R. CRC Press, Boca Ra-
ton, 2009.

[Kab11] Robert I. Kabacoff. R in Action: Data Analysis and Graphics with R.
Manning, Shelter Island, N.Y., 2011.

[Mat11] Norman Matloff. The Art of R Programming: A Tour of Statistical Soft-
ware Design. No Starch Press, San Francisco, 2011.

[Mit11] Hrishi V. Mittal. R Graphs Cookbook. Packt, Birmingham, U.K., 2011.
[MJS11] Walter R. Mebane, Jr. and Jasjeet S. Sekhon. Genetic optimization using

derivatives: the rgenoud package for r. Journal of Statistical Software.
URL http://www. jstatsoft. org, 2011.

[Mur11] Paul Murrell. R Graphics. CRC Press, Boca Raton, second edition, 2011.
[Pet03] Thomas Petzoldt. R as a simulation platform in ecological modelling. R

News, 3(3):8–16, 2003.
[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes: The Art of Scientific Computing. Cam-
bridge University Press, New York, third edition, 2007.

[Ric95] J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press,
Pacific Grove, CA, second edition, 1995.

[SCM12] Karline Soetaert, Jeff Cash, and Francesca Mazzia. Solving Differential
Equations in R. Springer, New York, 2012.

[Scr12] Luca Scrucca. Ga: A package for genetic algorithms in r. Journal of
Statistical Software, 53:1–37, 2012.

[SH10] Karline Soetaert and Peter M.J. Herman. A Practical Guide to Ecological
Modelling: Using R as a Simulation Platform. Springer, New York, 2010.

[SN87] J.M. Smith and H.C. Van Ness. Introduction to Chemical Engineering
Thermodynamics. McGraw-Hill, New York, 1987.

[Ste09] M. Henry Stevens. A Primer of Ecology with R. Springer, New York,
2009.

[Tee11] Paul Teetor. R Cookbook. O’Reilly, Sebastopol, CA, 2011.
[Van08] Steve VanWyk. Computer Solutions in Physics with Applications in As-

trophysics, Biophysics, Differential Equations, and Engineering. World
Scientific, Singapore, 2008.

[Ver04] John Verzani. Using R for Introductory Statistics. CRC Press, Boca
Raton, 2004.

[VR02] W.N. Venables and B.D. Ripley. Modern Applied Statistics with S.
Springer, New York, fourth edition, 2002.

[ZRE56] B.H. Zimm, G.M. Roe, and L.F. Epstein. Solution of a characteristic
value problem from the theory of chain molecules. J. Chem. Phys.,
24:279–280, 1956.

K13976

Instead of presenting the standard theoretical treatments that under-
lie the various numerical methods used by scientists and engineers,
Using R for Numerical Analysis in Science and Engineering
shows how to use R and its add-on packages to obtain numerical
solutions to the complex mathematical problems commonly faced
by scientists and engineers. This practical guide to the capabilities
of R demonstrates Monte Carlo, stochastic, deterministic, and other
numerical methods through an abundance of worked examples and
code, covering the solution of systems of linear algebraic equations
and nonlinear equations as well as ordinary differential equations and
partial differential equations. It not only shows how to use R’s power-
ful graphic tools to construct the types of plots most useful in scien-
tific and engineering work, but also

• Explains how to statistically analyze and fit data to linear and
nonlinear models

• Explores numerical differentiation, integration, and optimization
• Describes how to find eigenvalues and eigenfunctions
• Discusses interpolation and curve fitting
• Considers the analysis of time series

Using R for Numerical Analysis in Science and Engineering pro-
vides a solid introduction to the most useful numerical methods for
scientific and engineering data analysis using R.

Using R for Numerical
Analysis in Science
and Engineering

U
sing R

 for N
um

erical A
nalysis in S

cience and Engineering

Victor A. Bloomfield

B
loom

field

The R SeriesStatistics

K13976_Cover.indd 1 3/18/14 12:29 PM

	Front Cover
	Chapman & Hall/CRC The R Series
	Published Titles
	Contents
	List of Figures
	Preface
	Chapter 1 Introduction
	Chapter 2 Calculating
	Chapter 3 Graphing
	Chapter 4 Programming and functions
	Chapter 5 Solving systems of algebraic equations
	Chapter 6 Numerical differentiation and integration
	Chapter 7 Optimization
	Chapter 8 Ordinary differential equations
	Chapter 9 Partial differential equations
	Chapter 10 Analyzing data
	Chapter 11 Fitting models to data
	Bibliography
	Back Cover

